4.8 Article

Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics

期刊

BIOSENSORS & BIOELECTRONICS
卷 212, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114411

关键词

Infectious disease; Lateral flow immunoassay; Afterglow; HIV; SARS-CoV-2

资金

  1. Shanghai Science and Technology Biomedical Innovation Funds [19441904200]
  2. National Natural Science Foundation of China [81922035, 81871399]
  3. Program of Shanghai Academic Research Leader [20XD1423700]
  4. Fundamental Research Funds for the Central Universities (YoungHundred-Talent Program of Tongji University)

向作者/读者索取更多资源

A new type of aggregation-induced emission nanoprobes (LiAGNPs) can be applied in rapid testing, enhancing the sensitivity and adaptability of diagnosing highly contagious diseases, with broad application prospects.
The pandemic of highly contagious diseases has put forward urgent requirements for high sensitivity and adaptive capacity of point-of-care testing (POCT). Herein, for the first time, we report an aggregation-induced emission (AIE) dye-energized light-initiated afterglow nanoprobes (named LiAGNPs), implemented onto a lateral flow immunoassay (LFIA) test strip, for diagnosis of two highly contagious diseases, human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as model validation. The primary working mechanism relies on the cyclically generated singlet oxygen (O-1(2))-triggered time-resolved luminescent signals of LiAGNPs in which AIE dyes (TTMN) and chemiluminescent substrates (SO) are loaded. The designed LiAGNPs were found 2-fold and 32-fold sensitive than the currently used Eu(III)-based time resolved fluorescent nanoparticles and gold nanoparticles in lateral flow immunoassay (LFIA), respectively. In addition, the extra optical behaviors of nude color and fluorescence of LiAGNPs enable the LFIA platform with the capability of the naked eye and fluorescent detection to satisfy the applications under varying scenarios. In short, the versatile LiAGNPs have great potential as a novel time-resolved reporter in enhancing detection sensitivity and application flexibility with LFIA platform for rapid but sensitive infectious disease diagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据