4.8 Article

Lipid droplet-hitchhiking probe creates Trojan foam cells for fluorescence/photoacoustic imaging of atherosclerotic plaques

期刊

BIOSENSORS & BIOELECTRONICS
卷 216, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114613

关键词

-

资金

  1. National Natural Science Foundation of China [21834004]

向作者/读者索取更多资源

This study proposes a lipid droplet (LD)-hitchhiking strategy to create Trojan foam cells in situ for fluorescence/photoacoustic imaging of atherosclerotic plaques. The functional liposomes used in this strategy have shown great capability of inducing LDs in monocytes/macrophages and can be targeted to the plaque sites. Furthermore, the confinement in LDs enhances the efficiency of light absorption, resulting in intensified fluorescence/photoacoustic signals. This strategy provides new insights into the design of targeted imaging methodologies and facilitates the evaluation and treatment of atherosclerotic plaques.
Since atherosclerosis, a disease characterized by abnormal arterial lipid deposition, may lead to fatal cardiovascular diseases, imaging of atherosclerotic plaques is of great value for their pathological assessment. In this study, we propose a lipid droplet (LD)-hitchhiking strategy to in situ create Trojan foam cells for fluorescence/ photoacoustic imaging of atherosclerotic plaques via homologous targeting effect. In our design, functional liposomes (DCP liposomes) composed of phospholipid dioleoylphosphatidylserine (DOPS), a novel LD inducer we found, and Cypate-PC, a synthesized lipid-like molecular probe, have demonstrated great capability of inducing LDs in monocytes/macrophages while being enveloped into the resulting Trojan foam cells. Taking advantage of homologous targeting effect, the imaging probe hitchhikes on the LDs in Trojan foam cells for targeted transport to the plaque sites. Moreover, the confinement in highly hydrophobic LDs endows the imaging probe with high efficiency in light absorption, enabling greatly intensified fluorescence/photoacoustic signals. The DCP liposomes have shown great potency in inducing the generation of Trojan foam cells, and eventually ex vivo fluorescence imaging and in vivo photoacoustic imaging of atherosclerotic plaques. The proposed strategy provides more insights into the design of targeted imaging methodologies, and also an effective avenue to facilitate the evaluation and subsequent treatment of atherosclerotic plaques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据