4.8 Article

Enhanced nutrient removal and bioenergy production in microalgal photobioreactor following anaerobic membrane bioreactor for decarbonized wastewater treatment

期刊

BIORESOURCE TECHNOLOGY
卷 364, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2022.128120

关键词

Microalgae; Membrane photobioreactor; Decarbonization; Nutrient removal; Bioenergy production

向作者/读者索取更多资源

MPBR showed better nutrient removal, higher nutrient utilization and CO2 assimilation, as well as enhanced production of algal biomass and biogas with superior methane percentage, making it an attractive decarbonized technology for future sustainable wastewater treatment.
This study investigated the nutrient removal, decarbonization potentials, and bioenergy production (i.e., algal biomass and biogas) between a membrane photobioreactor (MPBR) and a sequencing photobioreactor (SPBR) as the post-treatment process of an anaerobic membrane bioreactor (AnMBR) for municipal wastewater treatment. All photobioreactors without aeration showed favourable performance on AnMBR effluent polishing and bioenergy production. In comparison, MPBRs achieved higher removal efficiencies with 98.4 %-99.1 % NH4-N and 74.8 %-88.4 % PO4-P removal compared to the SPBRs with 41.1 %-82.0 % NH4-N and 39.6 %-72.9 % PO4-P removal. MPBRs enhanced more nutrient utilization (24.9-49.3 g(N)/(m(3)center dot d) and 3.4-8.1 g(P)/(m(3)center dot d)) and CO2 assimilation (22.9-43.4 g(C)/(m(3)center dot d)), and concentrated more microalgae with 1.58-1.98 g/L higher than the SPBRs. Moreover, the MPBR effectively upgraded the biogas from AnMBR with superior methane percentage of 89.4 %-93.4 % due to its better CO2 biofixation. The MPBR, with better carbon, nitrogen and phosphorous removal and bioenergy production, following AnMBR is an attractive decarbonized technology for future sustainable wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据