4.7 Article

Modeling the Impact of Polychloramide Solution Properties on Bacterial Disinfection Kinetics

期刊

BIOMACROMOLECULES
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.2c00736

关键词

-

向作者/读者索取更多资源

This study introduces the research progress of anionic water-soluble polychloramide biocides and proposes a polymer-modified Chick-Watson model to explain disinfection kinetics. Experimental evidence supports the conclusions that lower molecular weight polymers and more compressed polymer structures have better biocidal effects.
Anionic water-soluble polychloramide biocides are of interest because, compared to conventional cationic antimicrobial polymers, anionic biocides are less likely to be sequestered or deactivated by contact with non-microbial soil. Although electrostatics can prevent anionic polymers from adsorbing on microbes, water-soluble polychloramides appear to transfer oxidative chlorine during transient contacts between polymer chains and microbe surfaces. The Chick-Watson model of disinfection kinetics has been modified to account for the contributions of polychloramide molecular weight (MW) and the polychloramide configuration in solution estimated from the overlap concentration, C*, below which dilute polymer chains exist as discrete objects in solution. The key assumption in the modeling was that the transfer rate of oxidative chlorine from polychloramide chains to microbe surfaces impacts the disinfection kinetics. Because both C* and MW are measurable, the polymer-modified Chick-Watson (PCW) model has one less unknown parameter than the two-parameter Chick-Watson equation. The PCW model predicts that lower MW polymers are more effective biocides compared with high MW counterparts. Additionally, polymers with more compressed configurations in solution are more effective biocides. Experimental evidence supports these conclusions. Based on the estimated time scale of bacteria/polymer collisions compared with disinfection kinetics, arguments are made that bacteria surfaces must be contracted many times by polychloramide chains to achieve sufficient Cl transfer to deactivate bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据