4.7 Article

Tailoring the Tag/Catcher System by Integrating Covalent Bonds and Noncovalent Interactions for Highly Efficient Protein Self-Assembly

期刊

BIOMACROMOLECULES
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.2c00765

关键词

-

资金

  1. National Natural Science Foundation of China [31922070, U2106228]

向作者/读者索取更多资源

This article introduces a multienzyme strategy based on covalent bonds and noncovalent interactions, and designs a new tag and catcher system for enzyme self-assembly. Using this system, stable multienzyme complexes can be formed in vivo and in vitro, leading to increased production of specific products.
Covalent bonds and noncovalent interactions play crucial roles in enzyme self-assembly. Here, we designed a Tag/Catcher system named NGTag/NGCatcher in which the Catcher is a highly charged protein that can bind proteins with positively charged tails and rapidly form a stable isopeptide bond with NGTag. In this study, we present a multienzyme strategy based on covalent bonds and noncovalent interactions. In vitro, mCherry, YFP, and GFP can form protein-rich three-dimensional networks based on NGCatcher, NGTag, and RK (Arginine/Lysine) tails, respectively. Furthermore, this technology was applied to improve lycopene production in Escherichia coli. Three key enzymes were involved in lycopene production variants from Deinococcus wulumugiensis R12 of NGCatcher_CrtE, NGTag_Idi, and RKIspARK, where the multienzyme complexes were clearly observed in vivo and in vitro, and the lycopene production in vivo was 17.8-fold higher than that in the control group. The NGTag/NGCatcher system will provide new opportunities for in vivo and in vitro multienzyme catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据