4.7 Article

Numerical simulation of the impact of urban canopies and anthropogenic emissions on heat island effect in an industrial area: A case study of Angul-Talcher region in India

期刊

ATMOSPHERIC RESEARCH
卷 277, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.atmosres.2022.106320

关键词

Urban morphology; Anthropogenic heat; WRFAH model; Industrial heat island

资金

  1. Odisha State Pollution Control Board, Government of Odisha, India [17785]

向作者/读者索取更多资源

Changing urban land use dynamics and anthropogenic heat have contributed to urban warming. The study examines the role of urban morphology and anthropogenic heat on the heat island effect in the Angul-Talcher region of India. The modified WRFUCM model shows improved performance in simulating surface temperature and wind speed with the inclusion of gridded anthropogenic heat.
Changing urban land use dynamics and associated anthropogenic heat (AH) has increased warming over urban centres. This warming is associated with the Urban Heat Island (UHI) effect and is mainly studied in major cities worldwide. However, predominantly industrial regions can also experience heat island effect due to heat emissions from industrial infrastructure and associated activities. The current study examines the role of the urban morphology and anthropogenic heat over the Angul-Talcher region (industrial region) of Odisha state, India. The region is also referred to as India's highly polluted industrial cluster due to open cast mining and industries. In the present study, Weather Research and Forecast model (WRF) coupled with Single-Layer Urban Canopy Model (WRFUCM) has been modified to examine the impact of urban morphology and anthropogenic heat on the heat island effect over the region. The study refers modified version of WRFUCM as the WRFAH [Gridded] model, which incorporates anthropogenic heat from different industries with stack height information. It was found that the WRF model capabilities have improved in simulating surface meteorological variables such as temperature at 2 m, wind speed, and relative humidity with the inclusion of gridded AH. Urban canopies were estimated to bring in an increase of up to 0.77? in local near-surface temperatures during daytime and up to 2.12? during nighttime. AH emissions further increased temperatures by up to 0.32? during daytime and 0.69? during nighttime. Maximum heat island intensity with urban canopies is estimated to be 5.62? which increases to 7.11? with the inclusion of average AH released at canopy level. However, this has significantly improved to 5.88 & DEG;C with inputs of industry-specific AH released at stack heights with the WRFAH[Gridded] model against observed maximum heat island intensity of 6.06?. Overall, the influence of urban morphology was found to be higher than the influence of AH over the region at ground level, and the inclusion of gridded AH in the model showed improved performance for the heat island assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据