4.7 Article

Performance analysis of solid oxide fuel cell/piston engine hybrid system for aviation

期刊

APPLIED THERMAL ENGINEERING
卷 214, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2022.118797

关键词

SOFC; Piston engine; Exergy analysis; Performance analysis; Hybrid power system

向作者/读者索取更多资源

This paper proposes a solid oxide fuel cell/piston engine hybrid power system for aviation, which uses turbocharging, autothermal reforming, and anode recirculation to solve the difficulties faced by hybrid power systems in aviation. The system modeling is conducted to analyze the thermodynamic performance and parameter influence law, and exergy analyses are carried out to determine the sources and degrees of thermodynamic inefficiency in the system. The largest exergy destruction occurs in the autothermal reformer, highlighting the system's potential for improvement.
In this paper, the solid oxide fuel cell/piston engine hybrid power system for aviation is proposed, which combines the solid oxide fuel cell and the piston engine. Turbocharging, autothermal reforming and anode recirculation are used to solve the difficulties of hybrid power system in aviation. In order to obtain the thermodynamic performance and parameter influence law of the solid oxide fuel cell/piston engine hybrid power system, the hybrid power system is modeled. The power generation efficiency of the hybrid power system is 52.29%. The power generation efficiency of the hybrid power system decreases with the increase of flight altitude, increases with the increase of compressor pressure ratio, and increases first and then decreases with the increase of the fuel utilization of fuel cell and anode reflux rate. Exergy analyses was carried out on the hybrid power system to determine the location, degree and source of thermodynamic inefficiency (exergy destructions and exergy losses) in the system. The largest exergy destruction occurred in the autothermal reformer, which accounted for 33.57%, followed by the piston engine, which accounted for 22.17% of the total exergy losses of the system. This paper provides a new and efficient aviation powertrain solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据