4.7 Article

Influence of water temperature on spray cooling at high surface temperatures

期刊

APPLIED THERMAL ENGINEERING
卷 216, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2022.119074

关键词

Leidenfrost temperature; Film boiling; Heat transfer coefficient; Heat flux; Spray cooling; Water temperature

资金

  1. Brno University of Technology focused on specific research and devel- opment [FSI-S-20-6478]

向作者/读者索取更多资源

This paper investigates the influence of water temperature on spray cooling and provides correlations and transformation functions to extend existing correlations. It fills the research gap by presenting generalized results.
Spray cooling is a common cooling method used in many high-temperature metallurgical processes. Heat transfer in the spray cooling of hot surfaces depends on many parameters, and one of them is cooling water temperature. Especially in the steel industry, the cooling water temperature is influenced by the season, the location in the world and also by the intensity of the manufacturing process. Using an experimental approach, the influence of water temperature on the Leidenfrost temperature and film boiling heat transfer coefficient in spray cooling is investigated. Extensive measurements, taken for two types of nozzles, different water flow rates and different water temperatures (12 ? to 78 ?), are presented. It is shown that the film boiling heat transfer coefficient and the Leidenfrost temperature decrease linearly as the water temperature increases. The obtained results are generalised into correlations and transformation functions, allowing extension of existing correlations, which are mostly valid only for water temperatures around 20 ?, to arbitrary water temperatures. All existing papers, which deal with the influence of the water temperature on spray cooling, only present the measured data and do not provide a generalisation of the results. This is a research gap, and this paper tries to fill it.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据