4.7 Article

Self-supported and hierarchically porous activated carbon nanotube/carbonized wood electrodes for high-performance solid-state supercapacitors

期刊

APPLIED SURFACE SCIENCE
卷 598, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.153765

关键词

Wood-derived carbon; Carbon nanotubes; Supercapacitors; Electrodes; Activation

资金

  1. National Natural Science Foundation of China [51773008, 52090034]
  2. Fundamental Research Funds for the Central Universities [XK1802]

向作者/读者索取更多资源

In this study, high-performance solid-state supercapacitors with high areal capacitance and excellent cycling stability were fabricated using self-supported fir wood-derived carbon electrodes with low tortuosity and hierarchically porous structure, and carbon nanotubes were introduced to provide large specific surface area and excellent chemical stability.
Though the low tortuosity and the vertically aligned porous channels of wood-derived carbon can facilitate the electrolyte permeation and charge transport, pristine wood-derived carbon electrodes usually deliver poor electrochemical performances. Herein, high-performance solid-state supercapacitors with high areal capacitance and excellent cycling stability are fabricated with self-supported fir wood-derived carbon electrodes with low tortuosity and hierarchically porous structure. Carbon nanotubes are introduced to provide large specific surface area, continues electron transport, and excellent chemical stability. Importantly, the hierarchically porous channels with low tortuosity and high porosity are constructed by incorporating the vertically aligned macrochannels from fir wood-derived carbon and the massive meso- and micro-channels created by KOH activation, which are beneficial for diffusion of ions. The hydrophilic and conductive activated carbon nanotube/wood carbon electrode exhibits an ultrahigh specific surface area of 1646.6 m2 g-1, a superior capacitance of 24.0 F cm-2 (493.7 F g-1) at 1 mA cm-2, and an excellent cycling stability with a capacitance retention of 98% after 10,000 cycles at 100 mA cm-2. Furthermore, the assembled solid-state symmetric supercapacitor possesses a highest power density of 15.7 mW cm-2 and a maximum energy density of 1.1 mWh cm- 2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据