4.7 Article

The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy

期刊

APPLIED SURFACE SCIENCE
卷 601, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.154171

关键词

Medium entropy alloy; High entropy alloy; SKPFM; XPS; Passivation; Corrosion

资金

  1. Bundesanstalt fuer Materialforschung und-pruefung (BAM), Berlin, Germany

向作者/读者索取更多资源

This study investigated the corrosion characteristics of CrCoNi and CrMnFeCoNi alloys in different solutions, and found that CrCoNi exhibited better corrosion resistance.
This work presents the determination of the corrosion characteristics of CrCoNi (medium entropy alloy) and CrMnFeCoNi (high entropy alloy) in 0.1 M NaCl and 0.1 M H2SO4. The morphology and chemical composition of the oxide layers formed on CrCoNi and CrMnFeCoNi were comparatively analyzed by scanning Kelvin probe microscopy (SKPFM) and scanning electron microscopy (SEM) and supported with chemical analysis by means of inductively coupled plasma mass spectrometry (ICP-MS) and X-Ray photoelectron spectroscopy (XPS). The analysis of the 3p core level peaks showed that the oxide layer (native and after anodic passivation) on CrCoNi consisted mainly of Cr oxides, while the oxide layer on CrMnFeCoNi was primarily composed of a mixture of Cr and Fe oxides. In addition, XPS was utilized to assess the oxide layer thicknesses. These results were compared to the thicknesses obtained by means of electrochemical impedance spectroscopy (EIS), with both approaches yielding values up to about 4 nm depending on the electrolyte and the alloy. Cyclic polarization measurements indicated superior corrosion resistance of CrCoNi in both aqueous environments compared to CrMnFeCoNi, as well as to AISI 304 stainless steel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据