4.5 Article

Pipeline damage identification based on an optimized back-propagation neural network improved by whale optimization algorithm

期刊

APPLIED INTELLIGENCE
卷 53, 期 10, 页码 12937-12954

出版社

SPRINGER
DOI: 10.1007/s10489-022-04188-7

关键词

Pipeline damage identification; Back-propagation neural network; Whale optimization algorithm; Damage location and degree

向作者/读者索取更多资源

In this study, a novel method that combines artificial neural network and swarm intelligence algorithm is proposed to improve the accuracy of pipeline damage identification. Experimental results demonstrate that the proposed method is effective and accurate in different damage states.
With the advantages of high economy and large transportation capacity, pipeline transportation is commonly used in industrial production. Pipeline damage induced by various factors will result in changes of physical properties, further leading to changes of dynamic parameters such as natural frequency and vibration mode. Recently, as a new type of tool, artificial intelligence is widely used for pipeline damage identification. In this study, to promote the accuracy of pipeline damage identification, a novel method that employs the artificial neural network (ANN) and swarm intelligence algorithm is proposed. In detail, based on the original whale optimization algorithm (WOA), an improved WOA (IWOA) is presented in which an adaptive coefficient strategy and a stochastic optimal substitution strategy are introduced. Then, the IWOA and back-propagation neural network (BPNN) are hybridized into IWOA-BPNN. Subsequently, a damage location detector and a damage degree detector are established based on the proposed IWOA-BPNN. By taking a pipeline fixed at both ends and its curvature and displacement modes, the proposed damage identification method is verified to confirm its effectiveness and accuracy in different damage states. Experimental results demonstrate that the comprehensive performance of IWOA-BPNN is better than other compared models. The relative error of the predicted results obtained by IWOA-BPNN is less than 2.2% when evaluating the damage location and degree for 12 randomly selected test samples, indicating the superiority of the proposed method. The proposed method has broad application prospects in modern industries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据