4.8 Article

A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements

期刊

APPLIED ENERGY
卷 325, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2022.119787

关键词

Battery capacity; State of charge; Lithium-ion batteries; Joint estimation; Fiber optic sensor

资金

  1. Fundamental Research Funds for the Central Universities, China [2022MS015]
  2. SP Energy Networks
  3. EPSRC, United Kingdom [EP/R030243/1]

向作者/读者索取更多资源

This study utilized FBG sensors to capture more process-related signals of batteries, and developed a hybrid machine learning framework for joint estimation of SOC and capacity, achieving significant improvements in estimation accuracy.
Accurate State of Charge (SOC) and State of Health (SOH) estimation is crucial to ensure safe and reliable operation of battery systems. Considering the intrinsic couplings between SOC and SOH, a joint estimation framework is preferred in real-life applications where batteries degrade over time. Yet, it faces a few challenges such as limited measurements of key parameters such as strain and temperature distributions, difficult extraction of suitable features for modeling, and uncertainties arising from both the measurements and models. To address these challenges, this paper first uses Fiber Bragg Grating (FBG) sensors to obtain more process related signals by attaching them to the cell surface to capture multi-point strain and temperature variation signals due to battery charging/discharging operations. Then a hybrid machine learning framework for joint estimation of SOC and capacity (a key indicator of SOH) is developed, which uses a convolutional neural network combined with the Gaussian Process Regression method to produce both mean and variance information of the state estimates, and the joint estimation accuracy is improved by automatic extraction of useful features from the enriched measurements assisted with FBG sensors. The test results verify that the accuracy and reliability of the SOC estimation can be significantly improved by updating the capacity estimation and utilizing the FBG measurements, achieving up to 85.58% error reduction and 42.7% reduction of the estimation standard deviation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据