4.8 Article

A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings

期刊

APPLIED ENERGY
卷 324, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2022.119742

关键词

Occupant-centric control; Deep learning; Reinforcement learning; Thermal comfort; Energy efficiency

资金

  1. Kajima Corporation, Japan through its Kajima Technical Research Institute Singapore (KaTRIS) [A-0008298-00-00]

向作者/读者索取更多资源

This study proposes a practical deep reinforcement learning framework for occupant-centric control of HVAC systems, which considers personalized thermal comfort and occupant presence. The framework achieves multi-dimensional control of the HVAC system in a real environment and shows significant energy savings and improvements in comfort.
Reinforcement learning (RL) has been shown to have the potential for optimal control of heating, ventilation, and air conditioning (HVAC) systems. Although research on RL-based building control has received extensive attention in recent years, there is limited real-world implementation to evaluate its performance while keeping occupants in the loop. Additionally, many HVAC systems consist of multiple subsystems, but conventional RL algorithms face significant challenges when dealing with high-dimensional action spaces. This study proposes a practical deep reinforcement learning (DRL) based multivariate occupant-centric control framework that considers personalized thermal comfort and occupant presence. Specifically, Branching Dueling Q-network (BDQ) is leveraged as the learning agent to efficiently solve the multi-dimensional control task, and a tabular-based personal comfort modeling method is applied that is naturally integrated into human-in-the -loop operations. The BDQ agent is pre-trained in a virtual environment, followed by online deployment in a real office space for 5-dimensional action control. Based on the actual deployment and real-time comfort votes, our results showed a 14% reduction in cooling energy and an 11% improvement in total thermal acceptability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据