4.8 Article

Solar energy-driven upcycling of plastic waste on direct Z-scheme heterostructure of V-substituted phosphomolybdic acid/g-C3N4 nanosheets

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 315, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121496

关键词

Plastic waste; Graphitic carbon nitride; Phosphomolybdic acid; Z-scheme photocatalysts

资金

  1. Key Program of National Natural Science Foundation of China [22133006]
  2. Natural Science Foundation of Shandong Province [ZR2020QB057]
  3. Fundamental Research Funds for the Central Universities [18CX02052A, 19CX05002A]
  4. Taishan Scholar Program of Shandong Province [ts201712019]
  5. Undergraduate Innovation Project of China University of Petroleum (East China) [202006039]
  6. Yankuang Group 2019 Science and Technology Program [YKKJ2019AJ05JG-R60]

向作者/读者索取更多资源

The increasing consumption of plastic waste has become a global pollution disaster, but a new strategy using visible light to convert plastic waste into high-value products shows promise. The study demonstrates the superior catalytic performance and efficient charge separation ability of the VPOM/CNNS heterostructure, highlighting its potential as a tool for the photo-driven upcycling of plastic waste.
The increasingly massive consumption of plastics is becoming a global pollution disaster, with serious environmental and economic problems. Here we report an efficient and sustainable strategy for the visible-light driven upcycling of various plastic wastes into high-value-added formic acid. We firstly design and fabricate a self-assembly Z-scheme heterostructure of V-substituted phosphomolybdic acid clusters/g-C3N4 nanosheets (VPOM/CNNS). The Z-scheme charge transfer process is unambiguously elucidated by transient absorption spectra and electron spin resonance studies, which endow VPOM/CNNS heterostructure with efficient charge separation and strong redox potentials. Consequently, VPOM/CNNS heterostructure displays a superior photo catalytic performance toward upcycling of various plastics. The optimal VPOM/CNNS composite exhibits a remarkable formic acid production rate of 24.66 mu mol h(-1) g-1 for upcycling of polyethylene, which is 262-fold higher than that of pristine CNNS. This work highlights the potential of Z-scheme heterojunction as an unusual tool for the photo-driven upcycling of plastic waste.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据