4.8 Article

Synthesis, characterization, and performance evaluation of UV light-driven Co-TiO2@SiO2 based photocatalytic nanohybrid polysulfone membrane for effective treatment of petroleum refinery wastewater

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 316, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121576

关键词

Cobalt doping; Co-TiO2 @SiO(2 )photocatalyst; Photocatalytic membrane; Antifouling; Wastewater treatment

资金

  1. Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia [642-01/UN7.6.1/PP/2022]
  2. Department of Chemical Engineering, Faculty of Engineering, Diponegoro University

向作者/读者索取更多资源

This study demonstrated that Co-doped TiO2 @SiO2 photocatalyst can enhance the photo-sensitivity and photocatalytic activity of the composite, improving the membrane performance significantly, showing great potential for practical applications.
This study investigates the effects of cobalt (Co) doped TiO2 @SiO2 photocatalyst in the polysulfone (PSf) membrane that performed a combined membrane filtration and photocatalytic process under UV light irradiation for petroleum refinery wastewater (PRW) treatment. The photocatalyst composites were synthesized using the sol-gel method, and the membranes were prepared using the phase inversion technique. Characterization results showed that the Co doping in TiO2 successfully improved the photo-sensitivity and photocatalytic activity of the composite, suggesting the reduction of the bandgap energy from 3.10 eV to 3.00 eV, which promoted the photocatalytic activity improvement. The addition of Co-TiO2 @SiO2 photocatalyst improved the membrane's porosity, hydrophilicity, water uptake ability, affinity towards water molecules, and mechanical strength. Furthermore, the PSf/Co-TiO2 @SiO2 membrane also exhibited enhanced performance on permeate flux, pollutant rejection, stability, recyclability, and durability. The fabricated photocatalytic membranes also exhibited superior antifouling performance and flux recovery ability when they performed under UV light irradiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据