4.8 Article

Zinc-assisted MgO template synthesis of porous carbon-supported Fe-Nx sites for efficient oxygen reduction reaction catalysis in Zn-air batteries

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 313, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121454

关键词

Atomically dispersed catalysts; Oxygen reduction; Fe-N-4 sites; Porous structure; Zn-air batteries

资金

  1. NSFC-RFBR Joint Research Project [22111530014, 21-53-53034]
  2. Natural Science Foundation of Heilongjiang Province [LH2021B026]
  3. National Natural Science Foundation of China [21878061]

向作者/读者索取更多资源

A zinc-assisted MgO template strategy is used to construct porous carbon-supported Fe-N4 catalysts, which exhibit high ORR performance and stability. The Fe-N4 sites lower the energy barrier for ORR, and the porous structure accelerates the diffusion of O2, making Fe-N-C a promising catalyst for Zn-air batteries.
Atomically dispersed iron-nitrogen-carbon catalysts offer great potential in oxygen reduction reaction (ORR), yet the poor exposure and low density of Fe-Nx sites causes relatively low ORR activity. Herein, a zinc-assisted MgO template strategy is reported to construct porous carbon-supported Fe-N4 sites (Fe-N-C). Iron atoms surrounded by zinc species are converted to abundant Fe-N4 sites rather than Fe containing nanoparticles. Meanwhile, both the zinc species and the MgO template can effectively produce porous structure so as to increase the utilization of Fe-N4 sites. Fe-N-C achieves superior ORR performance and stability in alkaline medium. Theoretical calculations manifest that Fe-N4 sites can narrow the energy barrier for ORR. Moreover, finite element simulation exhibits the porous framework in Fe-N-C could significantly accelerate the diffusion of O2. Therefore, Fe-N-C provides a high peak power density and superior discharge ability toward Zn-air batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据