4.6 Article

Low-temperature methanol synthesis via (CO2 + CO) combined hydrogenation using Cu-ZnO/Al2O3 hybrid nanoparticle cluster

期刊

APPLIED CATALYSIS A-GENERAL
卷 645, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcata.2022.118844

关键词

CO; CO2; Methanol; Catalyst; Hybrid

资金

  1. Ministry of Science and Technology (MOST) of Taiwan, R.O.C. [MOST 109-2223-E-007-002-MY3, MOST 111-2622-8-007-011]

向作者/读者索取更多资源

The conversion of CO2 into valuable fuel or chemical feedstock through hydrogenation to methanol is important for sustainable technological development. This study proposes a combined (CO2 + CO) hydrogenation process for methanol production and develops Cu-based hybrid catalysts to enhance catalytic performance. The results demonstrate that incorporating CO into the CO2 hydrogenation process can significantly increase methanol yield at relatively low temperature and moderate pressure.
Conversion of CO2 into valuable fuel or chemical feedstock is important to sustainable technological development. Hydrogenation of CO2 to methanol, preferably under a relatively low temperature and moderate pressure, is attractive. In this study, a combined (CO2 + CO) hydrogenation process is proposed as an alternative two-stage route for methanol production. Cu-based hybrid catalysts supported on alumina nanoparticle clusters were developed for promoting methanol production. The results show an increase of asymptotic to 3.2 times in methanol space-time yield (STYMeOH) at 220 ?C by incorporating CO to the CO2 hydrogenation process, and the maximum STYMeOH, 6.1 mmolg(cat)(-1) h-1, was achievable under a low-temperature (220 ?C), moderate high-pressure operation (30 bar). The work demonstrates a rational design of hybrid nanostructured material to achieve superior catalytic performance in the combined (CO2 + CO) hydrogenation. The mechanistic understanding gives insights into the interfacial catalysis by Cu-ZnO hybrid nanostructured materials for methanol production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据