4.6 Article

The Role of Microorganisms and Carbon-to-Nitrogen Ratios for Microbial Protein Production from Bioethanol

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/aem.01188-22

关键词

microbial food; bioethanol; microbial protein; C; N ratio; alternative protein

资金

  1. VLAIO (Flemish Agency for Innovation & Entrepreneurship) [HBC.2018.0188]
  2. ArcelorMittal Ghent
  3. Catalisti cluster SBO project CO2PERATE (All Renewable CCU Based on Formic Acid Integrated in an Industrial Microgrid)
  4. VLAIO, Belgium

向作者/读者索取更多资源

The global demand for protein is rapidly increasing and requires sustainable production strategies. Utilizing bioethanol as a resource for microbial protein production offers a more sustainable approach to meeting this demand.
The global protein demand is rapidly increasing at rates that cannot be sustained, with projections showing 78% increased global protein needs by 2050 (361 compared to 202 million ton(protein)/year in 2017). In the absence of dedicated mitigation strategies, the environmental effects of our current food production system (relying on agriculture) are expected to surpass the planetary boundaries-the safe operating space for humanity-by 2050. ABSTRACT With industrial agriculture increasingly challenging our ecological limits, alternative food production routes such as microbial protein (MP) production are receiving renewed interest. Among the multiple substrates so far evaluated for MP production, renewable bioethanol (EtOH) is still underexplored. Therefore, the present study investigated the cultivation of five microorganisms (2 bacteria, 3 yeasts) under carbon (C), nitrogen (N), and dual C-N-limiting conditions (molar C/N ratios of 5, 60, and 20, respectively) to evaluate the production (specific growth rate, protein and biomass yield, production cost) as well as the nutritional characteristics (protein and carbohydrate content, amino acid [AA] profile) of MP production from bioethanol. Under C-limiting conditions, all the selected microorganisms showed a favorable AA profile for human nutrition (average AA score of 1.5 or higher), with a negative correlation between protein content and growth rate. Maximal biomass yields were achieved under conditions where no extracellular acetate was produced. Cyberlindnera saturnus and Wickerhamomyces anomalus displayed remarkably high biomass yields (0.40 to 0.82 g cell dry weight [CDW]/g EtOHconsumed), which was reflected in the lowest estimated biomass production costs when cultivated with a C/N ratio of 20. Finally, when the production cost was evaluated on a protein basis, Corynebacterium glutamicum grown under C-limiting conditions showed the most promising economic outlook. IMPORTANCE The global protein demand is rapidly increasing at rates that cannot be sustained, with projections showing 78% increased global protein needs by 2050 (361 compared to 202 million ton(protein)/year in 2017). In the absence of dedicated mitigation strategies, the environmental effects of our current food production system (relying on agriculture) are expected to surpass the planetary boundaries-the safe operating space for humanity-by 2050. Here, we illustrate the potential of bioethanol-renewable ethanol produced from side streams-as a main resource for the production of microbial protein, a radically different food production strategy in comparison to traditional agriculture, with the potential to be more sustainable. This study unravels the kinetic, productive, and nutritional potential for microbial protein production from bioethanol using the bacteria Methylorubrum extorquens and Corynebacterium glutamicum and the yeasts Wickerhamomyces anomalus,Cyberlindnera saturnus, and Metschnikowia pulcherrima, setting the scene for microbial protein production from renewable ethanol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据