4.8 Article

Regioisomer-Free Difluoro-Monochloro Terminal-based Hexa-Halogenated Acceptor with Optimized Crystal Packing for Efficient Binary Organic Solar Cells

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

Simultaneous Enhanced Device Efficiency and Color Neutrality in Semitransparent Organic Photovoltaics Employing a Synergy of Ternary Strategy and Optical Engineering

Xinxin Yuan et al.

Summary: The study demonstrates that using new ternary photoactive layers can improve both the power conversion efficiency and color rendering index of semitransparent organic photovoltaics, leading to excellent neutral color perception. In addition, multifunctional semitransparent organic photovoltaics can be achieved by optimizing the content of PC71BM in the acceptors and using a photonic reflector, resulting in high device performance and good color neutrality.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Unveiling the Interplay among End Group, Molecular Packing, Doping Level, and Charge Transport in N-Doped Small-Molecule Organic Semiconductors

Gao-Yang Ge et al.

Summary: Three n-type small-molecule organic semiconductors with different end functional groups were synthesized in this study. The results suggest that high intrinsic charge carrier mobility and high doping level cannot guarantee high electrical conductivity, and maintaining good charge transport pathways after doping is also critical.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

A New End Group on Nonfullerene Acceptors Endows Efficient Organic Solar Cells with Low Energy Losses

Youwen Pan et al.

Summary: Chemical modifications were made to the famous Y-series nonfullerene acceptor BTP-4Cl-BO, resulting in the synthesis of two novel NFAs, BTP-T-2Cl and BTP-T-3Cl, with extended pi-conjugation through the fusing of IC group with a chlorinated thiophene ring. The OSC using BTP-T-2Cl exhibited a modest PCE of 14.89% with an extraordinary low energy loss of 0.49 eV, while the OSC using BTP-T-3Cl showed a higher PCE of 17.61% but with a slightly bigger energy loss of 0.51 eV. Adopting two NFAs of BTP-T-3Cl and BTP-4Cl-BO, a ternary OSC achieved an impressive PCE of 18.21%, demonstrating the effectiveness of expanding end groups of NFAs with electron-donating rings in reducing energy losses for OSCs.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Design of Near-Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High-Performance Semitransparent Ternary Organic Solar Cells

Wuyue Liu et al.

Summary: Semitransparent organic solar cells (ST-OSCs) are important applications of organic solar cells, but the current high-performance ST-OSCs still lack a low enough optical band gap to achieve the optimal balance between power conversion efficiency and average visible transmittance. By designing and synthesizing a new acceptor SN and incorporating it into the PM6:Y6 system, the performance of the solar cells can be significantly improved.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells

Guoping Li et al.

Summary: This study compares two types of end group fluorination patterns on Y6-based A-DAD-A cores, resulting in highly efficient NFAs: direct skeletal fluorination (BTF) and indirect trifluoromethyl fluorination (BTFM). The performance trends of BTF vs. BTFM OSCs can be correlated with diffraction-derived differences in molecular packing. DFT reveals low internal reorganization energies and high electronic coupling between NFA dimers, providing extended 3D charge transport networks in thin film crystalline domains.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Non-fullerene acceptors with hetero-dihalogenated terminals induce significant difference in single crystallography and enable binary organic solar cells with 17.5% efficiency

Lai Wang et al.

Summary: The synthesis of two new hetero-dihalogenated terminals with a fluorine/chlorine or fluorine/bromine pair, along with three NFAs incorporating these terminals, led to the achievement of high-performance OSCs. The presence of a fluorine/chlorine hetero-dihalogenated terminal resulted in the most planar molecular geometry, shortest intermolecular packing distance, and largest pi-pi electronic coupling among the acceptors, leading to improved crystallinity, phase separation, charge mobility, and recombination for enhanced power conversion efficiency of up to 17.52%.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Regulation of Crystallinity and Vertical Phase Separation Enables High-Efficiency Thick Organic Solar Cells

Lifu Zhang et al.

Summary: This study successfully addressed the performance degradation issue of thick film organic solar cells by introducing a nematic liquid crystalline small molecule donor BTR-Cl. By incorporating 10% BTR-Cl, the voltage loss was minimized in both thin and thick ternary devices, leading to improved power conversion efficiency.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Isogenous Asymmetric-Symmetric Acceptors Enable Efficient Ternary Organic Solar Cells with Thin and 300 nm Thick Active Layers Simultaneously

Hai-Rui Bai et al.

Summary: By incorporating an asymmetric acceptor into binary blends, ternary organic solar cells (OSCs) were prepared. The good compatibility of two isogenous acceptors with similar chemical skeletons optimized the morphology and improved the photon absorption ability and energy level matching. The optimized ternary OSCs achieved high conversion efficiency and champion efficiency.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Asymmetric Substitution of End-Groups Triggers 16.34% Efficiency for All-Small-Molecule Organic Solar Cells

Jinfeng Ge et al.

Summary: Asymmetric substitution of end-groups is applied in molecular donors for the first time, resulting in donors with increased dipole moments and enhanced aggregation propensity. Among the asymmetric donors studied, SM-CA-Reh shows the highest power conversion efficiency (PCE) and fill factor (FF) when using N3 as the acceptor. Characterization results suggest that the packing morphology of blend films is mainly influenced by π-π interaction rather than dipole effect or crystallinity.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Oligomer-Assisted Photoactive Layers Enable >18 % Efficiency of Organic Solar Cells

Yujun Cheng et al.

Summary: In this research, a new concept of oligomer-assisted photoactive layers for ternary organic solar cells (OSCs) is proposed. The addition of oligomers substantially enhances the performance and stability of the cells.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

The Intrinsic Role of the Fusion Mode and Electron-Deficient Core in Fused-Ring Electron Acceptors for Organic Photovoltaics

Yuan Guo et al.

Summary: The A-DA ' D-A fused-ring electron acceptors with an angular fusion mode and electron-deficient core have greatly improved organic photovoltaic efficiency. The structure of Y6, compared with other A-D-A acceptors, leads to stronger absorption, faster exciton diffusion, exciton dissociation, and electron transport. The electron-vibration coupling is also decreased, contributing to efficient charge generation under low driving forces in Y6-based devices.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Physical

A Random Terpolymer Donor with Similar Monomers Enables 18.28% Efficiency Binary Organic Solar Cells with Well Polymer Batch Reproducibility

Hai-Rui Bai et al.

Summary: In this study, a family of polymer donors for organic solar cells (OSCs) was synthesized using a ternary copolymerization approach. The terpolymer D18-20%Cl, with an appropriate proportion of chlorinated monomer, demonstrated the best performance with improved morphology and charge transport when blended with Y6. This resulted in a top-ranked power conversion efficiency (PCE) of 18.28% for D18-20%Cl:Y6-based OSCs, the highest reported PCE for terpolymer-based binary OSCs.

ACS ENERGY LETTERS (2022)

Article Chemistry, Multidisciplinary

The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A-DA′D-A type acceptors

Xiaolei Kong et al.

Summary: The side chain configuration of organic small molecule acceptors (SMAs) has been found to significantly impact their intermolecular interaction and aggregation morphology. In this study, two isomeric A-DA 'D-A type SMAs with thienyl outer side chains were designed and synthesized to investigate the effects of thienyl conjugated outer side chains and the alkyl substitution position on SMA properties. It was found that the beta-substituted m-TEH SMA exhibited stronger intermolecular interaction and higher electron mobility compared to the alpha-substituted o-TEH SMA. Furthermore, the m-TEH blend film with the PBQ6 polymer donor showed more suitable phase separation, enhanced molecular packing, and improved hole and electron mobilities compared to the o-TEH blend film. Organic solar cells based on PBQ6:m-TEH achieved a significantly higher power conversion efficiency (PCE) of 18.51% compared to PBQ6:o-TEH based solar cells. This study demonstrates that m-TEH with 2-ethylhexyl beta-substituted thienyl outer side chains is an excellent high-performance SMA for organic solar cells.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Review Chemistry, Multidisciplinary

Polymerized Small-Molecule Acceptors for High-Performance All-Polymer Solar Cells

Zhi-Guo Zhang et al.

Summary: All-polymer solar cells have attracted significant research interest due to their good film formation, stable morphology, and mechanical flexibility. The strategy of polymerizing small-molecule acceptors to construct new-generation polymer acceptors has significantly increased the power conversion efficiency, but current challenges and future prospects still need to be addressed.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

17.1 %-Efficient Eco-Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor

Hui Chen et al.

Summary: The performance of polymer solar cells processed by non-halogenated solvents was enhanced by designing and synthesizing a dissymmetric fused-ring acceptor BTIC-2Cl-gamma CF3, achieving a PCE of over 17% and showing significant advantages in storage and photo-stability, while extending the absorption peak to 852 nm.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar cells with Enhanced Fill Factor

Xia Guo et al.

Summary: In this study, a ternary copolymerization approach was used to develop a new terpolymer donor PM6-Tz20 with improved active layer morphology, leading to enhanced PCE in OSCs. By replacing Al with Ag as the cathode, the champion PCE was further improved, demonstrating the effectiveness of molecular design strategy in optimizing OSC performance.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

An Organic-Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells

Chaowei Zhao et al.

Summary: The hybrid electrolyte based on a cyclic Ti-oxo cluster and organic ammonium bromide salt demonstrates excellent solubility, aligned work function, good conductivity, and amorphous state, making it suitable for application as a cathode interlayer in organic solar cells with a high power conversion efficiency. This work suggests that hybrid electrolytes could be a new kind of semiconductor with promising applications in organic electronics.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Review Chemistry, Physical

Recent Progress and Challenges toward Highly Stable Nonfullerene Acceptor-Based Organic Solar Cells

Yiwen Wang et al.

Summary: While organic solar cells based on nonfullerene acceptors have achieved significant breakthroughs in their device performance, achieving long-term stability remains a major challenge for commercialization due to the lack of understanding of their degradation mechanisms and design rules for enhancing stability.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss

Wei Gao et al.

Summary: This study demonstrates that adjusting the molecular conformation of Y6-type NFAs can lead to high efficiency and reduced energy loss in organic solar cells.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Effect of Palladium-Tetrakis(Triphenylphosphine) Catalyst Traces on Charge Recombination and Extraction in Non-Fullerene-based Organic Solar Cells

Nora Schopp et al.

Summary: The impact of the cross-coupling catalyst Pd(PPh3)(4) on the performance of a model organic bulk-heterojunction solar cell was investigated, showing a significant effect on free charge carrier generation while limited impact on non-geminate recombination processes. The studied system exhibited substantial robustness towards the addition of small amounts of Pd(PPh3)(4).

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Regio-Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for All-Polymer Solar Cells with 15.2 % Efficiency

Han Yu et al.

Summary: The two regio-regular polymer acceptors synthesized in this study show significant performance difference, with PYF-T-o exhibiting better photon absorption and more ordered inter-chain packing, resulting in higher power conversion efficiency.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

15.3% Efficiency All-Small-Molecule Organic Solar Cells Achieved by a Locally Asymmetric F, Cl Disubstitution Strategy

Dingqin Hu et al.

Summary: A new asymmetric acceptor, BTP-FCl-FCl, was designed and synthesized to achieve a record efficiency of 15.3% for single-junction binary ASM organic solar cells by matching with a high-performance small molecule donor. The locally asymmetric structure of BTP-FCl-FCl resulted in improved charge generation and extraction, contributing to the enhanced performance of the devices.

ADVANCED SCIENCE (2021)

Article Chemistry, Physical

Alkyl-Chain Branching of Non-Fullerene Acceptors Flanking Conjugated Side Groups toward Highly Efficient Organic Solar Cells

Jianquan Zhang et al.

Summary: Side-chain modifications of NFAs play a crucial role in enhancing the performance of OSCs. By introducing bulkier alkyl chains branched at specific positions, it is possible to alter molecular packing, improve open-circuit voltage, and achieve better device performance. The side-chain branching design of NFAs shows great potential in optimizing molecular properties and promoting photovoltaic performance.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

A Difluoro-Monobromo End Group Enables High-Performance Polymer Acceptor and Efficient All-Polymer Solar Cells Processable with Green Solvent under Ambient Condition

Han Yu et al.

Summary: This study successfully increased the efficiency of all-polymer solar cells to 15.22% by designing and synthesizing a new polymer acceptor PY2F-T, demonstrating the effectiveness of fluorination strategy in improving photon absorption and charge mobility. Additionally, devices based on PY2F-T showed smaller domain spacing and higher domain purity, effectively suppressing charge recombination.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Multi-Selenophene-Containing Narrow Bandgap Polymer Acceptors for All-Polymer Solar Cells with over 15 % Efficiency and High Reproducibility

Qunping Fan et al.

Summary: The newly developed multi-selenophene-containing PSMA material PFY-3Se shows outstanding performance in all-polymer solar cells, with high efficiency, low energy loss, and good batch-to-batch reproducibility, indicating great potential for practical applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering

Xin Zhang et al.

Summary: NFREAs have simple synthetic routes, high efficiencies, and low costs, but their efficiencies are still far behind those of FREAs. This study designed new NFREAs with precisely tuned electronic properties, charge transport, and energy loss to achieve high-performance solar cell efficiencies.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor-Acceptor Photovoltaic Blends

Lijiao Ma et al.

Summary: The morphology of bulk heterojunctions in organic photovoltaic cells is crucial for charge generation, recombination, and transport, ultimately determining device performance. Enhancing the D-A interaction can benefit charge generation, but it may lead to severe charge recombination if domain purity is compromised. Fine-tuning the bulk morphology by modifying functional groups is essential for balancing charge generation and recombination in order to boost the efficiency of OPV cells.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Low-Driving-Force Organic Solar Cells

Lingyun Zhu et al.

Summary: Y6 as an NFA, with its unique charge polarization effects, has a small exciton binding energy, resulting in a distinct mechanism for charge generation in photovoltaic devices.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Simple Non-Fused Electron Acceptors Leading to Efficient Organic Photovoltaics

Tian-Jiao Wen et al.

Summary: Despite recent progress, organic photovoltaics (OPVs) still need to work on balancing efficiency, stability, and cost. This study developed two non-fused electron acceptors which, when blended with a specific polymer, achieved the highest reported efficiency for fully unfused electron acceptors.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency

Guoping Li et al.

Summary: The study found that combining the π-extension and halogenation strategies of end-capping groups (EG) in organic solar cells significantly impacts optical absorption, leading to an increase in power conversion efficiency (PCE).

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Energy & Fuels

Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells

Chao Li et al.

Summary: The molecular design of acceptor and donor molecules has significantly advanced organic photovoltaics. By introducing branched alkyl chains in non-fullerene acceptors, favorable morphology in the active layer can be achieved, leading to a certified device efficiency of 17.9%. This modification can completely alter the molecular packing behavior of non-fullerene acceptors, resulting in improved structural order and charge transport in thin films.

NATURE ENERGY (2021)

Article Nanoscience & Nanotechnology

End-Group Modifications with Bromine and Methyl in Nonfullerene Acceptors: The Effect of Isomerism

Lin Chen et al.

Summary: Isomeric molecules play a crucial role in finely tuning the photoelectric properties and device performance of organic solar cells. By manipulating isomeric substituent positions on benzene-fused end-capping groups in acceptors, molecular properties and blend film morphology can be effectively controlled. The results show that isomeric end-capping groups can provide strategies to enhance the performance of nonfullerene acceptors by tuning absorption spectra, intra-molecular charge transfer, and electron mobility of organic semiconductor devices.

ACS APPLIED MATERIALS & INTERFACES (2021)

Article Chemistry, Multidisciplinary

Correlating the Molecular Structure of A-DA'D-A Type Non-Fullerene Acceptors to Its Heat Transfer and Charge Transport Properties in Organic Solar Cells

Chujun Zhang et al.

Summary: The study examines the heat diffusion properties of Y-series non-fullerene acceptors with different frameworks and finds that extending the backbone rings results in higher thermal diffusivities. It demonstrates a correlation between the thermal transport properties in Y-series acceptors and their backbone geometry, molecule stacking, and thin-film crystallinity.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Efficient Hole Transfer via Delocalized Excited State in Small Molecular Acceptor: A Comparative Study on Photodynamics of PM6:Y6 and PM6:ITIC Organic Photovoltaic Blends

Shuyan Liang et al.

Summary: Organic solar cells (OSCs) based on small molecular acceptors (SMAs) have achieved significant progress, with a power conversion efficiency (PCE) over 16% due to novel material design and advances in device preparation technology. This study compared the performance of two bulk-heterojunction photovoltaic devices containing different SMAs, finding that the PM6:Y6 blend had a higher efficiency than the PM6:ITIC blend, demonstrating the importance of proper molecular design strategy and beneficial film morphology in facilitating charge generation in OSCs using SMAs.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Regioregular Narrow-Bandgap n-Type Polymers with High Electron Mobility Enabling Highly Efficient All-Polymer Solar Cells

Huiliang Sun et al.

Summary: The study successfully improved the efficiency of all-polymer solar cells by synthesizing narrow-bandgap polymer acceptors with regular structures. By introducing a ternary system with different components, further optimization of blend morphology and charge transport was achieved, leading to an enhanced power conversion efficiency.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

18.5% Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction

Ling Hong et al.

Summary: Establishing an ideal architecture with selective carrier transport and suppressed recombination is crucial for improving photovoltaic efficiency in organic solar cells (OSCs). By tailoring a hybrid planar/bulk structure, highly efficient OSCs with reduced energy losses were fabricated. The study highlights the potential of precisely regulating the structure of donor:acceptor heterojunction to further enhance the efficiencies of OSCs.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%

Yunhao Cai et al.

Summary: The ternary strategy of incorporating a third component into a binary blend has led to highly efficient organic solar cells with unprecedented power conversion efficiency values.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency

Can Yang et al.

Summary: By using a dissymmetric backbone and selenophene substitution on the central core, symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors with varying numbers of selenophene were synthesized, leading to improved device performance and efficiency.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

High-Performance Ladder-Type Heteroheptacene-Based Nonfullerene Acceptors Enabled by Asymmetric Cores with Enhanced Noncovalent Intramolecular Interactions

Changquan Tang et al.

Summary: By utilizing different arrangements of selenophene heterocycles, the photovoltaic performance of various nonfullerene acceptors can be improved, resulting in increased efficiency.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

18.77 % Efficiency Organic Solar Cells Promoted by Aqueous Solution Processed Cobalt(II) Acetate Hole Transporting Layer

Huifeng Meng et al.

Summary: A robust hole transporting layer (HTL) was successfully processed from Cobalt(II) acetate tetrahydrate precursor by thermal annealing (TA) and UV-ozone (UVO) treatments, achieving high work function and ideal charge extraction morphology. By optimizing the processing conditions, a record PCE of 18.77% was achieved with PM6 as the polymer donor and L8-BO as the electron acceptor, outperforming PEDOT:PSS-based solar cell devices.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics

Shuixing Li et al.

Summary: The study conducted on four non-fullerene acceptors reveals how extended conjugation, asymmetric terminals, and alkyl chain length can affect device performance. Understanding correlations between molecular structures and macroscopic properties is critical in realizing highly efficient organic photovoltaics.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

Rational compatibility in a ternary matrix enables all-small-molecule organic solar cells with over 16% efficiency

Mengyun Jiang et al.

Summary: In this study, ternary small-molecule organic solar cells were fabricated by incorporating a small molecule acceptor Y7 as a morphology modulator into a B1:BO-4Cl matrix, enabling fine-tuning of molecular arrangement to facilitate charge extraction and achieving top-ranked power conversion efficiency.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Physics, Condensed Matter

A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency

Jianqiang Qin et al.

JOURNAL OF SEMICONDUCTORS (2021)

Article Chemistry, Multidisciplinary

A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5% Efficiency

Can Yang et al.

Summary: The synthesis of symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors (NF-SMAs) using a dissymmetric backbone and selenophene substitution on the central core leads to improved optical and electrical properties. Increasing the number of selenophene results in a red-shifted absorption, as well as larger electron mobility and crystallinity in the thin film. The combination of dissymmetric core and precise replacement of selenophene effectively enhances charge transport characteristics in binary polymer solar cells.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency

Tao Liu et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics

Shuixing Li et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency

Yong Cui et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

High-Performance Fluorinated Fused-Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport

Shuixing Dai et al.

ADVANCED MATERIALS (2020)

Article Multidisciplinary Sciences

Organic photovoltaic cell with 17% efficiency and superior processability

Yong Cui et al.

NATIONAL SCIENCE REVIEW (2020)

Article Chemistry, Multidisciplinary

A Non-Conjugated Polymer Acceptor for Efficient and Thermally Stable All-Polymer Solar Cells

Qunping Fan et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

A Fully Non-fused Ring Acceptor with Planar Backbone and Near-IR Absorption for High Performance Polymer Solar Cells

Ya-Nan Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells

Francis Lin et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells

Zhenzhen Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model

Lingling Zhan et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Eco-Compatible Solvent-Processed Organic Photovoltaic Cells with Over 16% Efficiency

Ling Hong et al.

ADVANCED MATERIALS (2019)

Review Chemistry, Multidisciplinary

Advances in Solution-Processed Multijunction Organic Solar Cells

Dario Di Carlo Rasi et al.

ADVANCED MATERIALS (2019)

Review Chemistry, Multidisciplinary

All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects

Gang Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells

Yongxi Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Multidisciplinary

Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap

Huifeng Yao et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Review Chemistry, Multidisciplinary

Recent Advances in Bulk Heterojunction Polymer Solar Cells

Luyao Lu et al.

CHEMICAL REVIEWS (2015)