4.4 Article

Beneficial effects of Spirulina platensis on mice testis damaged by silver nanoparticles

期刊

ANDROLOGIA
卷 54, 期 11, 页码 -

出版社

WILEY
DOI: 10.1111/and.14606

关键词

oxidative stress; silver nanoparticles; spermatogenesis; Spirulina platensis; testis

向作者/读者索取更多资源

This study investigated the effects of Spirulina platensis (SP) on the reproductive toxicity of silver nanoparticles (AgNPs) in mouse testis. The results showed that AgNPs exposure had detrimental effects on spermatogenesis, sperm parameters, and testicular histopathology, while co-administration of SP alleviated these effects. SP also improved antioxidant capacity and reduced oxidative stress induced by AgNPs. These findings suggest that SP has a protective potential against AgNPs-induced reproductive toxicity.
Silver nanoparticles (AgNPs) have been used widely in medical applications and various industries. Humans could be exposed to the risk of AgNPs toxicity through different routes. The current study aimed to investigate the role of Spirulina platensis (SP) against the side effects of AgNPs on mice testis. Adult male NMRI mice were divided into four groups: control group, SP group (300 mg/kg bwt), AgNPs (20 nm) group (500 mg/kg bwt), Co-treated group (SP + AgNPs). The groups were treated orally for 35 days. Subsequently, epididymal sperm parameters, sperm DNA integrity, daily sperm production (DSP), sexual hormones level, malondialdehyde (MDA), total antioxidant capacity (TAC) and spermatogenesis indices were measured. In addition, the histopathology of testes was evaluated using tissue processing, haematoxylin-eosin staining and stereology techniques. A significant decrease in the number of spermatogenic cells, Leydig cells and sperm parameters was observed in the AgNPs treated group. Serum levels of testosterone and TAC were decreased significantly following AgNPs treatment. Also, MDA incremented in the serum of AgNPs treated mice. The stereological analysis revealed that AgNPs exposure induced histopathological changes in the seminiferous tubules, degeneration and dissociation of spermatogenic cells. In contrast, SP co-administration significantly counteracted AgNPs reproductive toxicity impacts. SP co-exposure caused an increase in spermatogenesis indices, TAC and also a decrease in MDA. SP improved the histopathological changes of testes tissue and spermatozoa abnormalities. In parallel, SP modulated levels of testosterone, FSH and LH. Spirulina platensis exhibited the protective potential by regulating oxidative stress against AgNPs-induced reproductive toxicity. SP could be a candidate therapy against AgNPs reprotoxic impacts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据