4.8 Article

PEGylated Ni Single-Atom Catalysts as Ultrasensitive Electrochemiluminescent Probes with Favorable Aqueous Dispersibility for Assaying Drug-Resistant Pathogens

期刊

ANALYTICAL CHEMISTRY
卷 94, 期 40, 页码 14047-14053

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c03546

关键词

-

资金

  1. National Natural Science Foundation of China
  2. Science and Technology Foundation of Guizhou Province
  3. [22074123]
  4. [21964023]
  5. [20201Y044]

向作者/读者索取更多资源

Ni single-atom catalysts (SACs) were synthesized and functionalized to develop highly sensitive electrochemiluminescent (ECL) probes for biosensors. The functionalized Ni SACs exhibited good aqueous dispersibility and could significantly enhance the ECL signal, making them suitable for various applications in biosensing.
Ni single-atom catalysts (SACs) were synthesized by high-temperature calcination of nickel ions and 1,10-phenanthroline on carbon black as a carrier. Benefiting from the ultrahigh atom utilization efficiency, Ni SACs can significantly accelerate decay of dissolved oxygen to generate abundant reactive oxygen species through an oxygen reduction reaction occurring on cathodes. The generated reactive oxygen species can vastly enhance the electrochemiluminescent (ECL) signal of luminol without participation of exogenous co-reactants. To overcome the inherent unfavorable aqueous dispersibility of Ni SACs prepared by the calcination protocol, they were functionalized with highly hydrophilic PEG 2000. Thanks to the abundant carboxyl groups on PEG 2000, the PEGylated Ni SACs (Ni@PEG) can be used as ECL probes to tag biorecognition molecules. In this proof-of-principle work, an ECL biosensor for assaying methicillin-resistant Staphylococcus aureus was developed by using porcine IgG as capture molecule and phage cell-binding domain tagged with Ni@PEG as signal tracer. It shows a broad linear range of 73-7.3 x 106 CFU/mL and a low detection limit of 25 CFU/mL. The recovery values for assaying spiked samples are between 80.8 and 119.2%. It was also utilized to assess MRSA susceptibility to four antibiotics, with results consistent with those obtained by the standard broth microdilution technique. To the best of our knowledge, it is the first time to utilize aqueous dispersible SACs as highly sensitive ECL probes for developing biosensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据