4.8 Article

Dynamic Observation of Retinal Response to Pressure Elevation in a Microfluidic Chamber

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.1c05652

关键词

-

资金

  1. National Institutes of Health [1R01EY027729]
  2. Glaucoma Research Foundation Schaffer prize

向作者/读者索取更多资源

In this study, a microfluidic platform capable of maintaining stable operating pressures while limiting shear stress was developed. The platform was demonstrated to be effective in measuring the change in intracellular Ca2+ levels of retinal ganglion cells in response to pressure. This microfluidic platform has potential for studying cell and tissue responses to elevated pressure.
Dynamic observation of cell and tissue responses to elevated pressure could help our understanding of important physiological and pathological processes related to pressure-induced injury. Here, we report on a microfluidic platform capable of maintaining a wide range of stable operating pressures (30 to 200 mmHg) while using a low flowrate (2-14 mu L/h) to limit shear stress. This is achieved by forcing flow through a porous resistance matrix composed of agarose gel downstream of a microfluidic chamber. The flow characteristics were investigated and the permeabilities of the agarose with four different concentrations were extracted, agreeing well with results found in the literature. To demonstrate the capability of the device, we measured the change in intracellular Ca(2+ )levels of retinal ganglion cells in whole mouse retina in response to pressure. The onset of enhanced pressure results in, on average, an immediate 119.16% increase in the intracellular Ca2+ levels of retinal ganglion cells. The demonstrated microfluidic platform could be widely used to probe cell and tissue responses to elevated pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据