4.8 Article

Flexible and High-Throughput Photothermal Biosensors for Rapid Screening of Acute Myocardial Infarction Using Thermochromic Paper-Based Image Analysis

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c02957

关键词

-

资金

  1. National Natural Science Foundation of China [21874022, 21675029]

向作者/读者索取更多资源

In this study, a flexible and low-cost thermosensitive fiber paper was developed for visual display in photothermal biosensing systems for early acute myocardial infarction. The color change mechanism of the thermal paper was based on the temperature-driven reversible transformation of the dye molecule. The results provide new insights for the development of low-cost, instrument-free portable photothermal biosensors.
Herein, we developed a flexible, low-cost thermosensitive fiber paper for the visual display in photothermal biosensing systems for early acute myocardial infarction. The thermal signal visualization device was encapsulated with rewritable thermal fibers, which exhibited excellent stability and reversibility. The mechanism of color change in thermal paper was based on a temperature-driven reversible transformation of the structure of the dye molecule (crystalline violet lactone, CVL). It exhibits a gradation from blue to colorless at higher temperatures and gradually returns to blue when the temperature drops. Immobilization and cascade enzymatic reactions of target molecules occurred in an integrated 3D-printed detection device, a photo -thermal conversion process occurred under near-infrared light excitation, and the colorimetric change values of the encapsulated thermal paper were recorded and evaluated for possible pathogenicity using a smartphone. It was worth noting that the effect of the thermogenic ring-opening behavior of CVL on the macroscopic phenomenon of color change was obtained by density functional theory calculations. Under optimized conditions, the naked-eye-recognizable range of the thermal paper-based photothermal immunoassay sensor was 0.2-20 ng mL-1, This work creatively presents theoretical studies of promising thermal paper-based photothermal biosensors and provides new insights for the development of low-cost, instrument-free portable photothermal biosensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据