4.6 Article

Insights into the active sites of dual-zone synergistic catalysts for semi-hydrogenation under hydrogen spillover

期刊

AICHE JOURNAL
卷 69, 期 3, 页码 -

出版社

WILEY
DOI: 10.1002/aic.17886

关键词

hydrogen spillover; kinetics; micro-mesoporous zeolite; semi-hydrogenation catalysis

向作者/读者索取更多资源

A well-designed catalyst with platinum and gold encapsulated in zeolite was studied for semi-hydrogenation reaction. Gold nanoparticles and zeolite surface were identified as the active sites for the reaction, with the gold active site showing preferable selectivity for phenylacetylene and 1,5-cyclooctadiene.
A well-defined catalyst with platinum (Pt) and gold (Au) encapsulated in micropore and mesopore of micro-mesoporous zeolite (Pt-Au/TMSN), respectively, was designed to investigate the original active sites of semi-hydrogenation. Specifically, hydrogen molecules are dissociated on Pt nanoclusters (NCs) to form hydrogen atoms that migrate to the surfaces of TMSN zeolite and Au nanoparticles (NPs) through hydrogen spillover effect. The characterization and catalytic results demonstrate that the Au NPs and zeolite surface are both identified as the semi-hydrogenation sites. Especially, the Au active site with low adsorption ability of alkene possesses preferable selectivity in the semi-hydrogenation of phenylacetylene and 1,5-cyclooctadiene. Noteworthy, the Pt-Au/TMSN exhibits higher selectivity of phenylethylene and cyclooctene than Pt/TMSN, as well as higher turnover frequency than Au/MSN. This work creates an effective regulation strategy of active sites working with a tandem mechanism for improving the semi-hydrogenation performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据