4.8 Article

Transcranial Nongenetic Neuromodulation via Bioinspired Vesicle-Enabled Precise NIR-II Optical Stimulation

期刊

ADVANCED MATERIALS
卷 35, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202208601

关键词

nongenetic neuromodulation; photoacoustic imaging; second near-infrared window; transcranial neurostimulation; vesicles

向作者/读者索取更多资源

Nanovesicles-mediated near-infrared (NIR-II) optical neurostimulation enables noninvasive and precise neuromodulation, with potential applications in optotheranostics for neurological diseases in nontransgenic organisms.
Regulating the activity of specific neurons is essentially important in neurocircuit dissection and neuropathy therapy. As a recently developed strategy, nanomaterial-enabled nongenetic neuromodulations that realize remote physical stimuli have made vast progress and shown great clinical potential. However, minimal invasiveness and high spatiotemporal resolution are still challenging for nongenetic neuromodulation. Herein, a second near-infrared (NIR-II)-light-induced transcranial nongenetic neurostimulation via bioinspired nanovesicles is reported. The rationally designed vesicles are obtained from vesicle-membrane-confined enzymatic reactions. This study demonstrates that the vesicle-enabled NIR-II photothermal stimuli can elicit neuronal signaling dynamics with precise spatiotemporal control and thus evoke defined neural circuits in nontransgenic mice. Moreover, the vesicle-mediated NIR-II optical stimulation can regulate mouse motor behaviors with minimal invasiveness by eliminating light-emitting implants. Furthermore, the biological modulation is integrated with photoacoustic brain imaging, realizing navigational, and efficient neuromodulation. Such transcranial and precise NIR-II optical neuromodulation mediated by bioinspired vesicles shows the potential for the optical-theranostics of neurological diseases in nontransgenic organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据