4.8 Article

Actively Triggerable Metals via Liquid Metal Embrittlement for Biomedical Applications

期刊

ADVANCED MATERIALS
卷 35, 期 11, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202208227

关键词

embrittlement; liquid metals; stimuli-responsive materials; triggerable materials; triggerable metals

向作者/读者索取更多资源

Actively triggerable materials allow for precise control over the lifetime of biomedical technologies and adaptation to unforeseen circumstances. This study demonstrates the use of a biocompatible gallium-indium alloy to trigger the breakdown of aluminum and showcases three possible applications of actively triggerable metals in biomedicine.
Actively triggerable materials, which break down upon introduction of an exogenous stimulus, enable precise control over the lifetime of biomedical technologies, as well as adaptation to unforeseen circumstances, such as changes to an established treatment plan. Yet, most actively triggerable materials are low-strength polymers and hydrogels with limited long-term durability. By contrast, metals possess advantageous functional properties, including high mechanical strength and conductivity, that are desirable across several applications within biomedicine. To realize actively triggerable metals, a mechanism called liquid metal embrittlement is leveraged, in which certain liquid metals penetrate the grain boundaries of certain solid metals and cause them to dramatically weaken or disintegrate. In this work, it is demonstrated that eutectic gallium indium (EGaIn), a biocompatible alloy of gallium, can be formulated to reproducibly trigger the breakdown of aluminum within different physiologically relevant environments. The breakdown behavior of aluminum after triggering can further be readily controlled by manipulating its grain structure. Finally, three possible use cases of biomedical devices constructed from actively triggerable metals are demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据