4.8 Article

A Demulsification-Crystallization Model for High-Quality Perovskite Nanocrystals

期刊

ADVANCED MATERIALS
卷 35, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202206969

关键词

accelerated crystallization; accelerated demulsification; acid ion assisted; multiple-stage nucleation; room-temperature synthesis

向作者/读者索取更多资源

Through the systematic study of the Pb precursor and in situ characterization of the PNCs, a novel demulsification-crystallization model is revealed. By tailoring this model using a multiple-acid-anion synergistic assisted strategy, high-quality PNCs are successfully obtained, leading to a top efficiency for green light-emitting diodes.
A room-temperature technique with all-nonpolar-solvent, which circumvents the sensitivity of ionic perovskite to polar solvent, has become attractive for the synthesis of metal halide perovskite nanocrystals (PNCs). However, the lack of understanding of the inner mechanism, especially for the state of the precursor and the crystallization process of the PNCs, hinders further development of this technique. Here, through systematic study of the Pb precursor and in situ characterization of the PNCs, it is revealed that the reverse micelle nature of the Pb precursor exactly creates a novel demulsification-crystallization (D-C) model, namely, a two-stage nucleation is divided by a demulsification process for the PNCs. On this basis, a top efficiency for green light-emitting diodes based on PNCs is obtained with a maximum external quantum efficiency of 22.5% through tailoring the D-C model using a multiple-acid-anion synergistic assisted strategy to obtain high-quality PNCs. Beyond the high efficiency, the work paves the way for diverse ideas in PNC synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据