4.8 Review

Powder Metallurgy Route to Ultrafine-Grained Refractory Metals

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202205807

关键词

grain growth; microstructure; powder metallurgy; refractory metals; sintering; ultrafine-grained materials

向作者/读者索取更多资源

Ultrafine-grained (UFG) refractory metals are promising materials for various applications, but achieving full density while maintaining a fine microstructure through sintering remains challenging. This article provides an overview of sintering issues, microstructural design rules, and powder metallurgy practices for UFG and nanocrystalline refractory metals. It also reviews previous efforts, including the use of fine/nanopowders and field-assisted sintering techniques, and highlights the recent technological breakthrough of pressureless two-step sintering for producing dense UFG refractory metals. Additionally, the progress of powder metallurgy in specific materials systems, such as elementary metals and refractory alloys, is discussed, and future developments towards UFG and nanocrystalline refractory metals with improved properties are outlined.
Ultrafine-grained (UFG) refractory metals are promising materials for applications in aerospace, microelectronics, nuclear energy, and many others under extreme environments. Powder metallurgy (PM) allows to produce such materials with well-controlled chemistry and microstructure at multiple length scales and near-net shape manufacturing. However, sintering refractory metals to full density while maintaining a fine microstructure is still challenging due to the high sintering temperature and the difficulty to separate the kinetics of densification versus grain growth. Here an overview of the sintering issues, microstructural design rules, and PM practices towards UFG and nanocrystalline refractory metals are sought to be provided. The previous efforts shall be reviewed to address the processing challenges, including the use of fine/nanopowders, second-phase grain growth inhibitors, and field-assisted sintering techniques. Recently, pressureless two-step sintering has been successfully demonstrated in producing dense UFG refractory metals down to approximate to 300 nm average grain size with a uniform microstructure and this technological breakthrough shall be reviewed. PM progresses in specific materials systems shall be next reviewed, including elementary metals (W and Mo), refractory alloys (W-Re), refractory high-entropy alloys, and their composites. Last, future developments and the endeavor towards UFG and nanocrystalline refractory metals with exceptionally uniform microstructure and improved properties are outlined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据