4.8 Article

A Janus Au-Polymersome Heterostructure with Near-Field Enhancement Effect for Implant-Associated Infection Phototherapy

期刊

ADVANCED MATERIALS
卷 35, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202207950

关键词

antibacterial properties; Janus particles; photodynamic therapy; photothermal therapy; polymersomes

向作者/读者索取更多资源

This study presents the synthesis of a novel Janus Au-porphyrin polymersome heterostructure with near-field enhancement effect, which enhances the photothermal and photodynamic activities and shows significant therapeutic effects in vivo.
Polymer-inorganic hybrid Janus nanoparticles (PI-JNPs) have attracted extensive attention due to their special structures and functions. However, achieving the synergistic enhancement of photochemical activity between polymer and inorganic moieties in PI-JNPs remains challenging. Herein, the construction of a novel Janus Au-porphyrin polymersome (J-AuPPS) heterostructure by a facile one-step photocatalytic synthesis is reported. The near-field enhancement (NFE) effect between porphyrin polymersome (PPS) and Au nanoparticles in J-AuPPS is achieved to enhance its near-infrared (NIR) light absorption and electric/thermal field intensity at their interface, which improves the energy transfer and energetic charge-carrier generation. Therefore, J-AuPPS shows a higher NIR-activated photothermal conversion efficiency (48.4%) and generates more singlet oxygen compared with non-Janus core-particle Au-PPS nanostructure (28.4%). As a result, J-AuPPS exhibits excellent dual-mode (photothermal/photodynamic) antibacterial and anti-biofilm performance, thereby significantly enhancing the in vivo therapeutic effect in an implant-associated-infection rat model. This work is believed to motivate the rational design of advanced hybrid JNPs with desirable NFE effect and further extend their biological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据