4.8 Article

Engineering Pore Nanostructure of Carbon Cathodes for Zinc Ion Hybrid Supercapacitors

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 32, 期 49, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202209914

关键词

mesopores; micropores; porous carbons; rate capability; zinc ion hybrid supercapacitors

资金

  1. National Natural Science Foundation of China [22108044]
  2. Research and Development Program in Key Fields of Guangdong Province [2020B1111380002]
  3. Basic Research and Applicable Basic Research in Guangzhou City [202201010290]
  4. Guangdong Provincial Key Laboratory of Plant Resources Biorefinery [2021GDKLPRB07]
  5. Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation [pdjh2022b0165]
  6. King Abdullah University of Science AMP
  7. Technology (KAUST)

向作者/读者索取更多资源

Zinc ion hybrid supercapacitors (ZIHCs) have great potential for energy storage applications due to their high power density and energy density. However, the large radius of hydrated Zn2+ ions hinders their efficient storage in micropores with limited sizes, resulting in limited specific capacitance and rate capability of ZIHCs. Therefore, understanding the extent to which pore size influences the storage of hydrated Zn2+ ions in small pores is crucial.
Zinc ion hybrid supercapacitors (ZIHCs) with both high power density and high energy density have tremendous potential for energy storage applications such as hybrid electric vehicles and renewable energy storage. However, the large radius of hydrated Zn2+ ions hampers their efficient storage in micropores with limited pore sizes, resulting in the limited gravimetric specific capacitance and inferior rate capability of ZIHCs. Therefore, it is critically important to understand to what extent pore size influences the storage of hydrated Zn2+ ions in the pores with limited sizes. Herein, porous carbon nanosheets with different pore architectures are prepared using an ammonium chloride molten salt carbonization strategy. The influence of pore size on hydrated Zn2+ ion storage in nanostructured carbon with divergent pore architectures is analyzed by electrochemical methods and molecular dynamic simulation. Micropores smaller than 6.0 angstrom obstruct the diffusion of hydrated Zn2+ ions, while micropores larger than 7.5 angstrom exhibit a low diffusion energy barrier for the hydrated Zn2+ ions. Mesopores improve capacitance and rate capability by exposing the electrochemically active sites and enhancing the diffusion of the hydrated Zn2+ ions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据