4.7 Article

Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys

期刊

ACTA MATERIALIA
卷 243, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2022.118495

关键词

Multicomponent alloys; Interstitial atoms; Local chemical order; Strength

向作者/读者索取更多资源

This study presents a universal strategy for designing ultrastrong and ductile face-centered cubic (fcc) multicomponent alloys by introducing interstitial-driven local chemical order (LCO) through simple thermomechanical processing. Fine laths containing interstitial-driven LCO domains have been observed in a prototype FeMnCoCrN alloy, resulting in an ultra-high yield strength of 1.34 GPa and a uniform elongation of 13.9%. This design strategy has also been successfully applied to a multicomponent austenitic steel, suggesting its potential in developing high-performance fcc materials at low cost.
Multicomponent alloys of the Fe-Mn-Co-Cr-Ni family with face-centered cubic (fcc) structure exhibit many excellent properties. However, they usually show limited yield strength, which cannot meet the demand for practical applications. Here, we report a universal strategy for designing ultrastrong and duc-tile fcc multicomponent alloys, by introducing interstitial-driven local chemical order (LCO) through sim-ple thermomechanical processing. In a prototype FeMnCoCrN multicomponent alloy processed by partial-recrystallization annealing, a high-density of fine laths containing interstitial-driven LCO domains (with both short-and medium-range orders) are predominant. Those laths evolve from planar dislocation slip bands promoted by the intrinsic short-range order of the alloy under prior cold deformation. Owing to the hardening effect of the LCO-laths, an ultra-high yield strength of 1.34 GPa is achieved, while deforma-tion twinning contributes to a uniform elongation of 13.9%. This design strategy, which is also successfully verified in a multicomponent austenitic steel, provides a new paradigm for developing high-performance fcc materials at low cost.(c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据