4.8 Article

On Intensifying Carrier Impurity Scattering to Enhance Thermoelectric Performance in Cr-Doped CeγCo4Sb12

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 25, 期 42, 页码 6660-6670

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201502782

关键词

-

资金

  1. US Department of Energy [DE-FC26-04NT42278]
  2. GM
  3. National Science Foundation [1235535]
  4. Div Of Civil, Mechanical, & Manufact Inn
  5. Directorate For Engineering [1235535] Funding Source: National Science Foundation

向作者/读者索取更多资源

The beneficial effect of impurity scattering on thermoelectric properties has long been disregarded even though possible improvements in power factor have been suggested by Ioffe more than a half century ago. Here it is theoretically and experimentally demonstrated that proper intensification of ionized impurity scattering to charge carriers can benefit the thermoelectric figure of merit (ZT) by increasing the Seebeck coefficient and decreasing the electronic thermal conductivity. The optimal strength of ionized impurity scattering for maximum ZT depends on the Fermi level and the density of states effective mass. Cr-doping in Ce gamma Co4Sb12 progressively increases the strength of ionized impurity scattering, and significantly improves the Seebeck coefficient, resulting in high power factors of 45 mu W cm(-1)K(-2) with relatively low electrical conductivity. This effect, combined with the increased Ce-filling fraction and thus decreased lattice thermal conductivity by charge compensation of Cr-dopant, gives rise to a maximum ZT of 1.3 at 800 K and a large average ZT of 1.1 between 500 and 850 K, approximate to 30% and approximate to 20% enhancements as compared with those of Cr-free sample, respectively. Furthermore, this study also reveals that carrier scattering parameter can be another fundamental degree of freedom to optimize electrical properties and improve thermal-to-electricity conversion efficiencies of thermoelectric materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据