4.6 Article

Multi-Objective Evolutionary formulations for design of hybrid Earth observing constellations

期刊

ACTA ASTRONAUTICA
卷 200, 期 -, 页码 420-434

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actaastro.2022.08.013

关键词

Small satellites; Satellite constellation; Coverage analysis; Orbit selection; Hybrid constellation; Constellation design

资金

  1. NASA [80NSSC18K1640]

向作者/读者索取更多资源

With advancements in satellite technology and cost reduction, Distributed Spacecraft Missions (DSMs) have emerged as a new paradigm in space exploration, offering higher capabilities through the use of multiple simpler and affordable satellites. However, the orbit selection problem for Earth Observation DSMs has become more complex, requiring consideration of multiple design variables and conflicting objectives.
With the recent advances in satellite miniaturization, communication and information technologies, and the advent of affordable small satellite launch services, there has been a paradigm shift in space exploration missions involving the transition from monolithic architectures formed by a large satellite to the concept of Distributed Spacecraft Missions (DSM), which fly multiple simpler and less costly satellites to offer increased capabilities such as better temporal, spatial, and angular sampling. Despite the potential to provide higher science return and novel data products, the orbit selection problem for Earth Observation DSMs requires a much more complex constellation design process, which involves several interrelated design variables and conflicting objectives. Because of this, prior work has focused mostly on relatively simple DSM architectures consisting of a single type of constellation, such as homogeneous Walker constellations. This paper presents a novel evolutionary formulation (i.e., chromosome and operators) in the context of Multi -Objective Evolutionary Algorithms (MOEA) that allows for the exploration of large tradespaces of non-Walker hybrid satellite constellations with diversity of orbital parameters. The idea behind this new formulation is that it allows to search through the space of different types of constellations - such as Walker formations, Sun-synchronous trains and string-of-pearls among others - and combinations thereof. This type of hybrid constellations have not been studied in detail. The methodology presented in this paper helps overcome the combinatorial explosion resulting when opening up the design space to include non-symmetrical configurations and relaxing constraints in the values of some orbital parameters (e.g. choosing a common altitude or inclination for all satellites forming the constellation). The proposed formulation is compared with a state-of-the-art evolutionary formulation using a variable-length chromosome in 5 different problems including the observation of symmetrical, asymmetrical, connected and disconnected regions of interest. Results show that the proposed formulations achieve better convergence and convergence rate than the state-of-the-art. The proposed method can reduce the effort required to design a problem formulation for each problem instance, while also reducing the risk of missing potentially good architectures due to formulations that are too restrictive and rely too much on previous experience and expertise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据