4.8 Article

Anion-Induced Reversible Actuation of Squaramide-Crosslinked Polymer Gels

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c11136

关键词

anion binding; squaramide; polymer gels; soft actuators; smart materials

资金

  1. Euro-pean Research Council [802830]
  2. Netherlands Organization for Scientific Research [VI.Vidi.192.049]
  3. European Research Council (ERC) [802830] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Supramolecular anion binding to squaramide crosslinkers in poly(N,N-dimethylacrylamide) gel networks enhances swelling and allows reversible chemically driven actuation. The volume swelling ratio of the gels is shown to depend on both the type of anion and its concentration. H-1 NMR and UV-vis titrations with the squaramide crosslinkers reveal a relationship between anion binding affinity and the concentration-dependent swelling behavior. Gel swelling is shown to be reversible, and by embedding a solid support into rod shaped gels, soft actuators are fabricated that undergo forward and backward bending motion in response to changing anion concentration. The swelling and bending process, which is accompanied by intense green coloration of the gel, is achieved by using only low amounts of crosslinker. This macroscopic actuation achieved by anion binding to specific molecular entities in the polymer network will open new opportunities in the field of chemically responsive materials.
Supramolecular anion binding to squaramide crosslinkers in poly(N,N-dimethylacrylamide) gel networks enhances swelling and allows reversible chemically driven actuation. The volume swelling ratio of the gels is shown to depend on both the type of anion and its concentration. H-1 NMR and UV-vis titrations with the squaramide crosslinkers reveal a relationship between anion binding affinity and the concentration-dependent swelling behavior. Gel swelling is shown to be reversible, and by embedding a solid support into rod shaped gels, soft actuators are fabricated that undergo forward and backward bending motion in response to changing anion concentration. The swelling and bending process, which is accompanied by intense green coloration of the gel, is achieved by using only low amounts of crosslinker. This macroscopic actuation achieved by anion binding to specific molecular entities in the polymer network will open new opportunities in the field of chemically responsive materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据