4.8 Article

Ultrastretchable, Antifreezing, and High-Performance Strain Sensor Based on a Muscle-Inspired Anisotropic Conductive Hydrogel for Human Motion Monitoring and Wireless Transmission

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c14120

关键词

conductive hydrogels; anisotropic hydrogels; strain sensor; antifreezing performance; wireless transmission

资金

  1. National Natural Science Foundation of China [52073078, 52003070]
  2. Zhejiang Provincial Natural Science Foundation [LR20E030003]

向作者/读者索取更多资源

This study presents a facile and universal method to construct an anisotropic hydrogel inspired by the aligned structure of human muscle. The hydrogel exhibits exceptional mechanical properties and sensing capabilities, making it suitable for flexible strain sensors and wireless human-machine interaction.
Integrating structural anisotropy, excellent mechanical properties, and superior sensing capability into conductive hydrogels is of great importance to wearable flexible electronics yet challenging. Herein, inspired from the aligned structure of human muscle, we proposed a facile and universal method to construct an anisotropic hydrogel composed of polyacrylamide and sodium alginate by pre-stretching in a confined geometry and subsequent ionic cross-linking. The designed hydrogels showed extraordinary mechanical performances, such as ultrahigh stretchability, a comparable modulus to that of human tissues, and good toughness, ascribed to their anisotropically aligned polymer networks. Additionally, the hydrogel possessed anisotropic conductivity due to the anisotropy in ion transport channels. The hydrogel along the vertical direction was further cut and assembled into a flexible strain sensor, exhibiting a low detection limit (0.1%), wide strain range (1585%), rapid response (123 ms), distinct resilience, good stability, and repeatability, thereby being capable of monitoring and discriminating different human movements. In addition, the relatively high ionic conductivity and superior sensitivity enabled the anisotropic hydrogel sensor to be used for wireless human-machine interaction. More interestingly, the Ca2+-cross-linking strategy also endowed the hydrogel sensor with antifreezing ability, further broadening their working temperature. This work is expected to speed up the development of hydrogel sensors in the emerging wearable soft electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据