4.4 Article

The correlated characteristics of micro-seismic and electromagnetic radiation signals on a deep blasting workface

期刊

JOURNAL OF GEOPHYSICS AND ENGINEERING
卷 13, 期 6, 页码 1020-1035

出版社

OXFORD UNIV PRESS
DOI: 10.1088/1742-2132/13/6/1020

关键词

coal and rock dynamic disaster; micro-seismic; electromagnetic radiation; synchronism; correlated characteristics

资金

  1. National Natural Science Foundation project [51274206, 51404277]
  2. Program of Central Universities Fundamental Research Funds from the Ministry of Education of China [2014QZ05]

向作者/读者索取更多资源

To date, both micro-seismic (MS) and electromagnetic radiation (EMR) techniques are used as normal, daily safety monitoring tools for coal or rock dynamic disasters in China. In previous studies, these two non-destructive techniques are usually analyzed independently; few works have been done to characterize the correlation or difference between them. This paper aims to analyze the correlated features of the MS and EMR signals obtained from a field site test on a deep blasting workface in Pingdingshan 10(#) coal colliery. The de-noised signals are firstly compared for their associated features, both in time synchronization and energy correlation, and then the mechanism for the correlated response is also investigated. The results show that: (1) MS and EMR signals have a higher time-synchronization and energy correlation. (2) The EMR signal in a blasting operation is a local signal, near to the location of the detectors. (3) The two orthogonal layout magnetic antennas (along the roadway and vertical to the coal wall) can detect a single pulse signal and group-occurring cluster signals. These two kinds of EMR signals result from coal crack evolution and resistance-capacitance (RC) oscillation circuits respectively, which are triggered by seismic longitudinal waves. (4) The seismic transverse wave, especially for the low frequency component of it, makes a rubbing friction effect on coal, producing a low-frequency electromagnetic oscillation signal. Affected by the power and propagation direction of the energy, the signal can only be captured by the antenna in the vertical direction of the coal wall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据