4.7 Article

GLONASS ionosphere-free ambiguity resolution for precise point positioning

期刊

JOURNAL OF GEODESY
卷 90, 期 5, 页码 487-496

出版社

SPRINGER
DOI: 10.1007/s00190-016-0888-7

关键词

GLONASS; Ambiguity resolution; Precise point positioning (PPP)

资金

  1. NRCan Earth Sciences Sector [20150361]

向作者/读者索取更多资源

Current GLONASS satellites transmit signals based on the frequency division multiple access (FDMA) technology. Due to equipment delays occurring within GNSS receivers, GLONASS carrier phase and code observations are contaminated by inter-frequency biases. As a consequence, GLONASS ambiguity parameters in long-baseline processing are typically estimated as float values. In this paper, a strategy is investigated which benefits from the frequency spacing of GLONASS frequencies on the L and L bands, allowing for an ionosphere-free ambiguity with a wavelength of approximately 5 cm to be defined; therefore, avoiding the problematic wide-lane ambiguity resolution. Based on 12 independent baselines with a mean inter-station distance of about 850 km over a 1-week period, it is demonstrated that close to 95 % of the estimated double-differenced ionosphere-free ambiguities are within 0.15 cycles of an integer, thereby suggesting that long-baseline ambiguity resolution can be achieved for GLONASS. Applying between-station ambiguity constraints in precise point positioning (PPP) solutions was found to improve longitudinal repeatability in static mode by more than 20 % for sessions between 2 and 6 h in duration. In kinematic mode, only limited improvements were made to the initial convergence period since the short wavelength of GLONASS ionosphere-free ambiguities requires the solution to be nearly converged before successful ambiguity resolution can be achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据