4.6 Article

Volatile Retention and Morphological Properties of Microencapsulated Tributyrin Varied by Wall Material and Drying Method

期刊

JOURNAL OF FOOD SCIENCE
卷 81, 期 3, 页码 E643-E650

出版社

WILEY
DOI: 10.1111/1750-3841.13243

关键词

gas chromatography; mass spectroscopy, microencapsulation, spray drying

资金

  1. Hatch Project [ILLU-698-380]
  2. United State Department of Agriculture

向作者/读者索取更多资源

Butyric acid is an important short-chain fatty acid for intestinal health and has been shown to improve certain intestinal disease states. A triglyceride containing 3 butyric acid esters, tributyrin (TB) can serve as a source of butyric acid; however, the need to target intestinal delivery and mitigate unpleasant sensory qualities has limited its use in food. Microencapsulation, the entrapment of one or more cores within a matrix, may provide a solution to the aforementioned challenge. This research primarily focused on the influence of (1) wall material: whey and soy protein isolate (WPI and SPI, respectively) and gamma-cyclodextrin (GCD), (2) wall additives: inulin of varying chain length, and (3) processing method: spray or oven drying (SD or OD, respectively) on the morphological properties and volatile retention of TB within microcapsules. SPI-based microcapsules retained significantly less (P < 0.001) TB compared to WPI-based microcapsules as measured by gas chromatography. The inclusion of inulin in the SD WPI-based microcapsules increased (P < 0.001) TB retention over WPI-based microcapsules without inulin. Inulin inclusion into WPI-based microcapsules resulted in a smoother, minimally-dented, circular morphology as compared to noninulin containing WPI-based microcapsules as shown by scanning electron microscopy. GCD and TB OD microcapsules retained more (P < 0.001) TB (94.5% +/- 1.10%) than all other WPI, WPI-inulin, and GCD TB SD microcapsules. When spray dried, the GCD-based microcapsules exhibited (P < 0.001) TB retention than all other microcapsules, indicating the GCD may be unsuitable for spray drying. These findings demonstrate that microencapsulated TB in GCD can lead to minimal TB losses during processing that could be utilized in functional food applications for intestinal health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据