4.7 Article

Particle transport in turbulent curved pipe flow

期刊

JOURNAL OF FLUID MECHANICS
卷 793, 期 -, 页码 248-279

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2016.136

关键词

multiphase flow; particie/fluid flow; turbulence simulation

资金

  1. ERC [2013-CoG-616186]

向作者/读者索取更多资源

Direct numerical simulations (DNS) of particle-laden turbulent flow in straight, mildly curved and strongly bent pipes are performed in which the solid phase is modelled as small heavy spherical particles. A total of seven populations of dilute particles with different Stokes numbers, one-way coupled with their carrier phase, are simulated. The objective is to examine the effect of the curvature on micro-particle transport and accumulation. It is shown that even a slight non-zero curvature in the flow configuration strongly impact the particle concentration map such that the concentration of inertial particles with hulk Stokes number 0.45 (based on hulk velocity and pipe radius) at the inner bend wall of mildly curved pipe becomes 12.8 times larger than that in the viscous sublayer of the straight pipe. Near-wall helicoidal particle streaks are observed in the curved configurations with their inclination varying with the strength of the secondary motion of the carrier phase. A reflection layer, as previously observed in particle laden turbulent S-shaped channels, is also apparent in the strongly curved pipe with heavy particles. In addition, depending on the curvature, the central regions of the mean Dean vortices appear to he completely depleted of particles, as observed also in the partially relaminarised region at the inner bend. The turbophoretic drift of the particles is shown to he affected by weak and strong secondary motions of the carrier phase and geometry-induced centrifugal forces. The first- and second-order moments of the velocity and acceleration of the particulate phase in the same configurations are addressed in a companion paper by the same authors. The current data set will be useful for modelling particles advected in wall-bounded turbulent flows where the effects of the curvature are not negligible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据