4.4 Article

Mesopredator foraging success in eelgrass (Zostera marina L.): Relative effects of epiphytes, shoot density, and prey abundance

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jembe.2015.10.014

关键词

Behavior; Eelgrass; Epiphytes; Habitat structure; Predation; Seagrass

资金

  1. San Diego Unified Port District [G00007385]
  2. San Diego State University
  3. SDSU Research Foundation

向作者/读者索取更多资源

In seagrass habitats, structural complexity influences predator foraging success and prey survival by moderating encounter rates and behaviors of predators and prey. Studies of the effects of structural complexity on predatorprey interactions typically vary seagrass shoot density, biomass, or architecture. Filamentous epiphytic algae commonly grow on seagrass blades and add structure to seagrasses, but the effect of epiphytes on the outcome of predator-prey interactions has rarely been explored. This study determined the relative effects of simulated seagrass epiphytes, eelgrass (Zostera marina) shoot density, and prey density on the foraging behaviors of a common predator, the juvenile giant kelpfish Heterostichus rostratus (Girard, 1854) and on escape responses of their prey, grass shrimp Hippolyte cahforniensis (Holmes, 1895). juvenile giant kelpfish hunted for grass shrimp in a laboratory experiment in which two levels of grass shrimp density were crossed with three levels of structural complexity (low density artificial eelgrass, low density artificial eelgrass with artificial epiphytes, and high density artificial eelgrass). Increased structural complexity had variable effects on juvenile kelpfish activity levels, but enhanced their success at catching prey after detection, resulting in no net effect of structural complexity on the total number of prey captured. Grass shrimp made fewer escape attempts in high vs. low structural complexity, which may have enhanced kelpfish foraging success because kelpfish rarely pursued fleeing prey. Prey density did not influence kelpfish behaviors or the total amount of prey they consumed. These results suggest that it is important to consider how different forms of habitat complexity affect the mechanisms by which predators hunt for prey in structured marine habitats. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据