4.6 Article

Impact of different nano additives on performance, combustion, emissions and exergetic analysis of a diesel engine using waste cooking oil biodiesel

期刊

PROPULSION AND POWER RESEARCH
卷 11, 期 2, 页码 209-223

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.jppr.2022.04.004

关键词

Waste cooking oil (WCO); Nano additives; Engine performance; Exergy; Combustion characteristics; Emissions

资金

  1. Heat Engine Laboratory of National Research Centre (NRC)
  2. El Dokki, Egypt

向作者/读者索取更多资源

This study investigates the influence of nano particles blended with biodiesel on engine performance and emissions. The results show that blending biodiesel with TiO2, Al2O3, and CNTs can enhance the combustion performance, decrease CO, HC, and smoke emissions, but increase NOx emissions.
Biodiesel is derived from waste cooking oil (WCO) by transesterification. Methyl ester was prepared by mixing diesel and biodiesel oils as 20% by volume. Nano particles as TiO2, Al2O3 and CNTs were blended with biodiesel blend at different concentrations of 25, 50, and 100 mg/l to enhance the physicochemical fuel characteristics to obtain clean and efficient combustion performance. An experimental setup was incorporated into a diesel engine to investigate the influence of these nano-materials on engine performance, exergy analysis, combustion characteristics and emissions using WCO biodiesel-diesel mixture. Enriching methyl ester mixture with 100 ppm titanium, alumina and CNTs (B20T100, B20A100 and B20C100) increased the thermal efficiency by 4%, 6% and 11.5%, respectively compared to B20. Biodiesel blending with nano additives B20T100, B20A100 and B20C100 decreased the emissions of CO (11%, 24% and 30%, respectively), HC (8%, 17% and 25%, respectively) and smoke (10%, 13% and 19%, respectively) compared to B20. However, the noticeable in-crease of NOx was estimated by 5%, 12% and 27% for B20T100, B20A100 and B20C100, respectively. Finally, the results showed the rise in peak cylinder pressure by 5%, 9% and 11% and increase in heat release rate by 4%, 8% and 13% for B20T100, B20A100 and B20C100, respectively. The fuel exergy of B20T100, B20A100 and B20C100 are lower than biodiesel blend B20 by 6.5%, 16% and 23% but the exergetic efficiency are increased by 7%, 19% and 30% at full load about B20. 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据