4.6 Article

Pore pressure prediction using seismic acoustic impedance in an overpressure carbonate reservoir

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13202-022-01524-y

关键词

Acoustic impedance; Carbonate reservoirs; Pore pressure; Post-stack inversion; Repeat formation test (RFT)

向作者/读者索取更多资源

This study discusses the use of direct acoustic impedance for pore pressure estimation in a famous Iranian carbonate reservoir, which yielded acceptable results compared to traditional methods. The results revealed overpressure zones and pressure reduction areas, providing significant implications for determining reservoir boundaries and planning drilling trajectories for new wells.
The drilling engineers favor a quantifiable understanding of the subsurface overpressure zones to avoid drilling hazards. The conventional pore pressure estimation techniques in carbonate reservoirs are prone to uncertainties that affect the calculated pore pressure model resolution and are still far from satisfactory. Basically, in carbonate reservoirs, the effect of chemical process and cementation on porosity is more important than the mechanical compaction, so the conventional pore pressure prediction methods based on the normal compaction trend mostly do not provide acceptable results. Using the conventional methods for carbonate reservoirs can yield large errors, even suggesting a reduction in abnormal pressure in overpressure zones where considerable attention must be paid. Conventional methods need to model density and velocity to calculate the effective and overburden pressures. Converting acoustic impedance to density and velocity is always associated with errors and generally provides low resolution, which adds substantial uncertainties to the pressure prediction. Although pore pressure measurements are usually associated with low resolution, additional error-prone steps can be dropped if used directly. This research outlines the pore pressure estimation of a famous Iranian carbonate reservoir using direct acoustic impedance without inverting it to density and velocity. Finally, this method gives acceptable results in carbonate formations compared to the results of the Repeat Formation Test (RFT) in this region. The results show a zone of overpressure between the two low-pressure intervals of the carbonate reservoir. This result can be of great help in determining reservoir boundaries as well as in planning for drilling trajectory for new wells. Furthermore, the pore pressure estimation results also show pressure reduction in the central part of the seismic section. The proposed approach is a viable alternative to the conventional method and is in line with the geological field report, where the ratio of hydrocarbon potential of total rock on the reservoir sides is higher than its middle part. In this study, we want to emphasize that the calibrated function obtained in our area can be used in similar basins with carbonate reservoirs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据