4.5 Article

Object approach computation by a giant neuron and its relationship with the speed of escape in the crab Neohelice

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 219, 期 21, 页码 3339-3352

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.136820

关键词

Looming; Collision avoidance; Motion detection; Lobula neurons; Escape response; Crustacean

类别

资金

  1. Agencia Nacional de Promocion Cientifica y Tecnologica Argentina (ANPCYT) [PICT 2012-2765, PICT 2013-0450]
  2. Universidad de Buenos Aires [20020130100583BA]

向作者/读者索取更多资源

Upon detection of an approaching object, the crab Neohelice granulata continuously regulates the direction and speed of escape according to ongoing visual information. These visuomotor transformations are thought to be largely accounted for by a small number of motion-sensitive giant neurons projecting from the lobula (third optic neuropil) towards the supraesophageal ganglion. One of these elements, the monostratified lobula giant neuron of type 2 (MLG2), proved to be highly sensitive to looming stimuli (a 2D representation of an object approach). By performing in vivo intracellular recordings, we assessed the response of the MLG2 neuron to a variety of looming stimuli representing objects of different sizes and velocities of approach. This allowed us to: (1) identify some of the physiological mechanisms involved in the regulation of the MLG2 activity and test a simplified biophysical model of its response to looming stimuli; (2) identify the stimulus optical parameters encoded by the MLG2 and formulate a phenomenological model able to predict the temporal course of the neural firing responses to all looming stimuli; and (3) incorporate the MLG2-encoded information of the stimulus (in terms of firing rate) into a mathematical model able to fit the speed of the escape run of the animal. The agreement between the model predictions and the actual escape speed measured on a treadmill for all tested stimuli strengthens our interpretation of the computations performed by the MLG2 and of the involvement of this neuron in the regulation of the animal's speed of run while escaping from objects approaching with constant speed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据