4.5 Article

Bypass diode effect and photovoltaic parameter estimation under partial shading using a hill climbing neural network algorithm

期刊

FRONTIERS IN ENERGY RESEARCH
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenrg.2022.837540

关键词

hill climbing neural network algorithm; parameter estimation; single-diode model; double-diode model; bypass diode; partial shading condition

资金

  1. FCT/MCTES
  2. [UIDB/50008/2020]

向作者/读者索取更多资源

This paper studies the impact of partial shading on photovoltaic power and proposes a hill climbing neural network algorithm to predict photovoltaic power output. Experimental results show that the algorithm can find highly accurate solutions with low computational cost and high reliability. This method has great potential for application.
In recent decades, population growth and industrial evolution have led to a significant increase in the need to produce electricity. Photovoltaic energy has assumed a key role in responding to this need, mainly due to its low cost and reduced environmental impact. Therefore, predicting and controlling photovoltaic power is an indispensable task nowadays. This paper studies how photovoltaic power can be affected under non-uniform irradiance conditions, i.e., when the photovoltaic energy production system is under partial shading. Concretely, the effect of bypass diodes on the current-voltage characteristic curve, according to the shaded area, was studied and the power loss under partial shading was quantified. In addition, electrical characteristics and the temperature distribution in the photovoltaic module were analyzed. Furthermore, we propose a hill climbing neural network algorithm to precisely estimate the parameters of the single-diode and double-diode models under partial shading conditions and, consequently, predict the photovoltaic power output. Different shading scenarios in an outdoor photovoltaic system were created to experimentally study how partial shading of a photovoltaic module affects the current-voltage characteristic curve. Six shading patterns of a single cell were examined, as well as three shading patterns of cells located in one or more strings. The hill climbing neural network algorithm was experimentally validated with standard datasets and different shading scenarios. The results show that the hill climbing neural network algorithm can find highly accurate solutions with low computational cost and high reliability. The statistical analysis of the results demonstrates that the proposed approach has an excellent performance and can be a promising method in estimating the photovoltaic model parameters under partial shading conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据