4.6 Article

Work and Fluctuations: Coherent vs. Incoherent Ergotropy Extraction

期刊

QUANTUM
卷 6, 期 -, 页码 -

出版社

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
DOI: 10.22331/q-2022-07-14-762

关键词

-

资金

  1. National Science Centre, Poland [SONATINA 2 2018/28/C/ST2/00364]

向作者/读者索取更多资源

This article investigates the quasi-probability distribution of energy for an isolated quantum system coupled to an energy-storage device. It analyzes the trade-off between changes in average energy and changes in the variance of the weight, where work is extracted from the coherent and incoherent ergotropy of the system. The study reveals that the extraction of positive coherent ergotropy can reduce work fluctuations by utilizing non-classical states of a work reservoir.
We consider a quasi-probability distribution of work for an isolated quantum system coupled to the energy-storage device given by the ideal weight. Specifically, we analyze a trade-off between changes in average energy and changes in weight's variance, where work is extracted from the coherent and incoherent ergotropy of the system. Primarily, we reveal that the extraction of positive coherent ergotropy can be accompanied by the reduction of work fluctuations (quantified by a variance loss) by utilizing the non-classical states of a work reservoir. On the other hand, we derive a fluctuation-decoherence relation for a quantum weight, defining a lower bound of its energy dispersion via a dumping function of the coherent contribution to the system's ergotropy. Specifically, it reveals that unlocking ergotropy from coherences results in high fluctuations, which diverge when the total coherent energy is unlocked. The proposed autonomous protocol of work extraction shows a significant difference between extracting coherent and incoherent ergotropy: The former can decrease the variance, but its absolute value diverges if more and more energy is extracted, whereas for the latter, the gain is always non-negative, but a total (incoherent) ergotropy can be extracted with finite work fluctuations. Furthermore, we present the framework in terms of the introduced quasi-probability distribution, which has a physical interpretation of its cumulants, is free from the invasive nature of measurements, and reduces to the two-point measurement scheme (TPM) for incoherent states. Finally, we analytically solve the work-variance trade-off for a qubit, explicitly revealing all the above quantum and classical regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据