4.5 Article

Novel Thin Film Nanocomposite Membranes Based on Chitosan Succinate Modified with Fe-BTC for Enhanced Pervaporation Dehydration of Isopropanol

期刊

MEMBRANES
卷 12, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/membranes12070653

关键词

chitosan succinate; thin film nanocomposite membrane; dynamic technique; physical adsorption; metal-organic frameworks; Fe-BTC; pervaporation; isopropanol dehydration

资金

  1. Russian Foundation for Basic Research [19-58-04014]
  2. Belarussian Republican Foundation for Fundamental Research [X19PM-052]

向作者/读者索取更多资源

This study developed novel thin film nanocomposite (TFN) membranes based on biopolymer chitosan succinate (ChS) modified with the metal organic framework iron 1,3,5-benzenetricarboxylate (Fe-BTC) to enhance pervaporation dehydration. The TFN membranes showed improved permeation flux compared to the reference TFC ChS membrane. The best transport properties were observed in TFN membranes with 40 wt.% Fe-BTC prepared by dynamic technique and TFN membranes with 5 wt.% Fe-BTC developed by physical adsorption.
The application of environmentally friendly and energy-efficient membrane processes allows improvement the ecological safety and sustainability of industrial production. However, the effective application of membrane processes requires novel high-performance thin film composite (TFC) membranes based on biopolymers to solve environmental problems. In this work for the first time novel thin film nanocomposite (TFN) membranes based on biopolymer chitosan succinate (ChS) modified with the metal organic framework iron 1,3,5-benzenetricarboxylate (Fe-BTC) were developed for enhanced pervaporation dehydration. The formation of a selective layer of TFN membranes on the porous membrane-support was carried out by two methods-dynamic technique and physical adsorption. The effect of the membrane formation method and Fe-BTC content in ChS layer on the structure and physicochemical properties of TFN membranes was investigated. The developed TFN ChS-based membranes were evaluated in the pervaporation dehydration of isopropanol (12-30 wt.% water). It was found that TFN ChS-Fe-BTC membranes prepared by two methods demonstrated improved permeation flux compared to the reference TFC ChS membrane. The best transport properties in pervaporation dehydration of isopropanol (12-30 wt.% water) were possessed by TFN membranes with 40 wt.% Fe-BTC prepared by dynamic technique (permeation flux 99-499 g m(-2) h(-1) and 99.99% water in permeate) and TFN membranes with 5 wt.% Fe-BTC developed by physical adsorption (permeation flux 180-701 g m(-2) h(-1) and 99.99% water in permeate).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据