4.7 Review

Luminescent Composite Carbon/SiO2 Structures: Synthesis and Applications

期刊

BIOSENSORS-BASEL
卷 12, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/bios12060392

关键词

luminescent composite particles; carbon nanostructures; luminescent carbon-based nanomaterials; silica nanoparticles; luminescence

资金

  1. Ministry of Science and Higher Education of the Russian Federation [FSRR-2020-0002]

向作者/读者索取更多资源

Luminescent carbon nanostructures (CNSs) have attracted attention due to their photoluminescent properties, structural features, low toxicity, and various applications. The application of a silica matrix reduces the challenges in separating CNSs and improves their optical properties. In addition, multifunctional particles combining CNSs with other nanoparticles show promise in diverse fields.
Luminescent carbon nanostructures (CNSs) have attracted great interest from the scientific community due to their photoluminescent properties, structural features, low toxicity, and a great variety of possible applications. Unfortunately, a few problems hinder their further development. These include the difficulties of separating a mixture of nanostructures after synthesis and the dependence of their properties on the environment and the aggregate state. The application of a silica matrix to obtain luminescent composite particles minimizes these problems and improves optical properties, reduces photoluminescence quenching, and leads to wider applications. We describe two methods for the formation of silica composites containing CNSs: inclusion of CNSs into silica particles and their grafting onto the silica surface. Moreover, we present approaches to the synthesis of multifunctional particles. They combine the unique properties of silica and fluorescent CNSs, as well as magnetic, photosensitizing, and luminescent properties via the combination of functional nanoparticles such as iron oxide nanoparticles, titanium dioxide nanoparticles, quantum dots (QDs), and gold nanoclusters (AuNCs). Lastly, we discuss the advantages and challenges of these structures and their applications. The novelty of this review involves the detailed description of the approaches for the silica application as a matrix for the CNSs. This will support researchers in solving fundamental and applied problems of this type of carbon-based nanoobjects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据