4.6 Article

Targeting the Ubiquinol-Reduction (Qi) Site of the Mitochondrial Cytochrome bc1 Complex for the Development of Next Generation Quinolone Antimalarials

期刊

BIOLOGY-BASEL
卷 11, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/biology11081109

关键词

antimalarial; Plasmodium falciparum; atovaquone; drug resistance; quinolone; bc(1) inhibitor; crystallography; molecular modeling; homology modeling; mitochondria

类别

资金

  1. University of Liverpool
  2. University of Mahidol

向作者/读者索取更多资源

Malaria is a life-threatening disease transmitted by mosquito bites, and developing new antimalarial drugs is crucial to fight drug-resistant strains. This study investigates the interaction between various antimalarial drugs and human and parasite cytochrome bc(1) complex through experimental and computational research, providing important insights for the design of more effective and safe drugs.
Simple Summary Malaria is a life-threatening disease which infects millions of people a year via mosquito bites, particularly in developing countries. Although many malaria drugs are available in the market today, all of them have been challenged by drug-resistant variants. Developing a new drug to fight mutated malaria is extremely critical. Cytochrome bc(1) complex of malaria parasites is an important drug target focused on by several antimalarial development programs. One of those is the 4(1H)-quinolone series which inhibits cytochrome bc(1) and effectively kills drug-resistant malaria parasites. However, some of these compounds have unexpected toxicity due to cross-species inhibition of human cytochrome bc(1). In this work, we explore by experimental and computational studies how 4(1H)-quinolone compounds work with human and parasite cytochrome bc(1). This information reveals the key to improved selectivity between human and parasite cytochrome bc(1) and helps drug developers to design new compounds with better therapeutic efficiency and safety. Antimalarials targeting the ubiquinol-oxidation (Q(o)) site of the Plasmodium falciparum bc(1) complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Q(o) site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc(1) complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc(1). Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian's equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Q(i) sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc(1) with improved antimalarial properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据