4.6 Article

Isolation of Chitinolytic Bacteria from European Sea Bass Gut Microbiota Fed Diets with Distinct Insect Meals

期刊

BIOLOGY-BASEL
卷 11, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/biology11070964

关键词

Hermetia illucens; exuviae; Tenebrio molitor; spore-formers; Bacillus; probiotic; aquafeeds; chitinase; Bacillus licheniformis

类别

资金

  1. FCT (Fundacao para a Ciencia e a Tecnologia), Portugal [SFRH/BD/138375/2018, SFRH/BD/131069/2017, SFRH/BD/114995/2016]
  2. structured program of RDI ATLANTIDA-Platform for the monitoring of the North Atlantic Ocean and tools for the sustainable exploitation oNorth Portugal Regional Operational Programme (NORTE2020), through the European Regional Development Fund (ERDF)f the [NORTE-01-0145-FEDER-000040]
  3. FCT Technology [UIDB/04423/2020, UIDP/04423/2020]
  4. Fundação para a Ciência e a Tecnologia [SFRH/BD/138375/2018, SFRH/BD/131069/2017, SFRH/BD/114995/2016] Funding Source: FCT

向作者/读者索取更多资源

As the demand for fish increases due to the growing human population, aquaculture has become one of the fastest growing industries. However, the use of unsustainable fish meal as the main protein source in aquafeeds needs to be replaced. Recently, seven insect species have been approved as potential ingredients for animal feeds in Europe. Unfortunately, chitin, a component found in insects, is indigestible for economically valuable fish species, leading to lower fish performance. This study aimed to isolate probiotic bacteria from the gastrointestinal tract of European sea bass that can produce chitinases to improve the use of diets containing high levels of insect meal.
Simple Summary The ever-growing human population is increasingly demanding more fish. As a response, aquaculture has become the fastest growing industry in its sector. Alternatives to fish meal, an unsustainable commodity used as the main protein source for carnivorous species, are urgently needed in aquafeeds. Recently, in Europe, seven insect species have been approved as potential ingredients for animal feeds, including fish feed. However, chitin, one of the components of an insect's exoskeleton, is indigestible for several economically valuable fish species, decreasing fish performance upon inclusion. This work aimed to isolate, from the European sea bass gastrointestinal tract, probiotic bacteria capable of producing chitinases to improve the use of diets containing high levels of insect meal. Based on the enhanced adaptability of gut microbial communities and the selective pressure of chitin-enriched diets on fish gut microbiota, bacteria were first isolated from the gastrointestinal tract of European sea bass fed chitin-enriched diets. Isolates were then comprehensively screened in vitro for important traits such as their ability to utilize chitin, gut-survival aptitude, and biosafety-related issues required to be considered eligible as probiotics by the European Food Safety Authority (EFSA). Insect meal (IM), recently authorized for use in aquafeeds, positions itself as a promising commodity for aquafeed inclusion. However, insects are also rich in chitin, a structural polysaccharide present in the exoskeleton, which is not digested by fish, resulting in lower fish performance. Through the application of a dietary pressure, this study aimed to modulate European sea bass gut microbiota towards the enrichment of chitinolytic bacteria to allow the isolation of novel probiotics capable of improving the use of IM-containing diets, overcoming chitin drawbacks. Five isoproteic (44%) and isolipidic (18%) diets were used: a fish meal (FM)-based diet (diet CTR), a chitin-supplemented diet (diet CHIT5), and three diets with either 25% of Hermetia illucens and Tenebrio molitor larvae meals (HM25 and TM25, respectively) or H. illucens exuviae meal (diet HEM25) as partial FM substitutes. After an 8-week feeding trial, the results showed a clear modulatory effect towards spore-forming bacteria by HM25 and HEM25 diets, with the latter being responsible for the majority of the chitinolytic fish isolates (FIs) obtained. Sequential evaluation of the FI hemolytic activity, antibiotic resistance, total chitinolytic activity, sporulation, and survival in gastrointestinal-like conditions identified FI645 and FI658 as the most promising chitinolytic probiotics for in vivo application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据