4.7 Article

The clove (Syzygium aromaticum) genome provides insights into the eugenol biosynthesis pathway

期刊

COMMUNICATIONS BIOLOGY
卷 5, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-022-03618-z

关键词

-

向作者/读者索取更多资源

This study compares the newly assembled clove genome with Eucalyptus grandis to investigate genome evolution in the Myrtaceae family and identifies potential genes involved in the biosynthesis of eugenol. The findings provide important genomic resources for clove research and the Myrtaceae family.
A newly assembled clove genome is compared with E. grandis to investigate genome evolution between the two genera of the Myrtaceae family, and putative genes involved in the biosynthesis of eugenol are identified through transcriptomics and metabolomics. The clove (Syzygium aromaticum) is an important tropical spice crop in global trade. Evolving environmental pressures necessitate modern characterization and selection techniques that are currently inaccessible to clove growers owing to the scarcity of genomic and genetic information. Here, we present a 370-Mb high-quality chromosome-scale genome assembly for clove. Comparative genomic analysis between S. aromaticum and Eucalyptus grandis-both species of the Myrtaceae family-reveals good genome structure conservation and intrachromosomal rearrangements on seven of the eleven chromosomes. We report genes that belong to families involved in the biosynthesis of eugenol, the major bioactive component of clove products. On the basis of our transcriptomic and metabolomic findings, we propose a hypothetical scenario in which eugenol acetate plays a key role in high eugenol accumulation in clove leaves and buds. The clove genome is a new contribution to omics resources for the Myrtaceae family and an important tool for clove research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据